

Rill Erosion in the Field

Critical Shear Velocity (Savat, 1982)

Hydraulic Conditions for Rill Initiation on Steep Slopes

SHIN, SEOUNG SOOK

GANGNEOUNG-WONJU NATIONAL UNIVERSITY, Gangneung, South Korea SIM, YOUNG JU

GANGNEOUNG-WONJU NATIONAL UNIVERSITY, Gangneung, South Korea PARK, SANG DEOG

GANGNEOUNG-WONJU NATIONAL UNIVERSITY, Gangneung, South Korea

Introduction

- The formation of soil erosion includes the processes of detachment, entrainment, and transport of soil particles by surface runoff.
- Rills begins to appear when the erosion of surface runoff exceeds the resistance of soil particles.
- The steeper the slope, the smaller critical shear stress and the more active the rill incision (Yao et al, 2008).
- Soil particles on steep slope is more easily eroded than those on gentle slope because the surface soil has a high potential energy.
- In this study, simulation test of rainfall and inflow water was conducted to identify the characteristics of rill erosion development on steep slope.

Rainfall Simulator

- Rainfall simulator
- Water supply by pump
 VeeJet80100 nozzle to represent raindrops
- Half oscillating spray to control rainfall
- Soil box
- Soil box size : 0.6m(W)×0.8m(L)×0.3m (D)
- Surface runoff plots to evaluate soil erosion

Tank to offer upper overland flow Containers to collect surface and subsurface runoff

Rill development according to inflow

Hydraulic Characteristic

Relationship between Sediment yield and Flow Velocity

Conclusions

- Sediment yield for rill erosion increased significantly with increase of rainfall intensity, slope steepness, and segment distance.
- The initiation of the rill was developed when the segment distance was the range from 2.4 to 3.2m of high inflow rate and surface runoff.
- The critical shear velocity for rill initiation was the range from 3.5 to 8.75 cm/s that can transport particles of sandy soil.
- The rill initiation depended greatly on the inflow water rather than rainfall intensity.
- Sediment yield by interrill and rill from steep hillslope increased rapidly with increase of surface runoff and velocity.

* This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2019R1A2C1009285).

24

18.8

