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ABSTRACT 

Based on the stochastic processes, the hydraulic characteristics of sand wave in riverbed were investigated. The 

irregularity of sediment transportation on the movable bed to have the physical significance have to be dealt 

with stochastic process. With using the distribution function of the step-length, we derive a new sand wave 

equation and compare with another equation derived from the deterministic perspective based on principle of 

hydraulics in movable bed. We can presume higher orders Fokker-Planck equation in stochastic processes and 

apply sediment transportation. This study aims to analyze the correlation of sand wave equations from different 

perspectives and to provide mathematical interpretations of them. 
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1. INTRODUCTION 

The physical quantities we observe on a daily basis are observed as average values of microscopic physical 

quantities that move randomly on the molecular scale. In other words, the observed physical quantity can be 

said to be a function having a degree of freedom on the order of the Avogadro's number of a particle, and the 

particle constantly moves intensely due to thermal motion. In addition, the fluctuation may affect the actual 

observables. It is indispensable to discuss the concept of stochastic analysis not only on a small molecular scale 

but also on physical quantities that treated in the fields of hydrology and rivers. To understand natural 

phenomena by statistical mechanics, when expanding the characteristics at the micro scale to the macro scale, 

instead of describing all the motions for every single particle, they aggregated into physical quantities by 

probability distribution. It is common to find the behavior of it. On the other hand, in the moving bed 

phenomenon, there are various riverbed forms depending on the scale, and the minimum unit that constitutes 

the form can be classified from the viewpoint of the riverbed wave scale and the viewpoint of the sand particle 

scale. Furthermore, they are different between determinism and probability theory. Since sediment transport is 

a phenomenon with discrete and stochastic characteristics, it is necessary to consider the non-equilibrium in the 

sediment transport process at any scale. Based on these characteristics, modeling is proceeding in consideration 

of both determinism and probability theory for sediment transport from different scale perspectives, and 

comparing each role with actual phenomena. However, when viewed on the sand particle scale, the sediment 

moves randomly, but it does not mention why certain shapes are created in sand wave scale. In other words, 

when magnifying information from a single particle, the relationship between the two scales is still unclear. 

Based on these facts, this study aims to connect the sand particle scale with the riverbed wave scale by 

theoretically describing the relevance of different scale perspectives. 

2. DERIVATION OF SAND WAVE EQUATION BASED ON STOCHASTIC PROCESS 

The stochastic process of sediment transport is based on the concept of a long rest time “rest period (reciprocal 

of average pick-up rate)” and instantaneous position change “step-length” proposed by Einstein (1937). 

Considering the effect of the non-equilibrium of the sediment transport, the continuous equation of the sediment 

transport rate q and the riverbed height η in consideration of the porosity is expressed by Eq. (1). 
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Figure 1. Schematic diagram of sediment movement on the riverbed 

 

Consider the movement of sand grains on the moving bed shown in Figure 1. Considering the number of sand 

particles picked up by x-ξ and passing through x, the amount of sediment transport can be expressed as Eq. (2) 

using the pick-up rate ps. 
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Here, fX(l) is the probability density function of the step-length, and follows the exponential distribution as 

shown in Figure 1. A1, A2, A3 are the shape coefficients of each dimension, c0 = A1d. Eq. (3) can be obtained by 

changing Eq. (2) using the Leibniz integral rule. 
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On the right side of Eq. (3), pd is a deposit rate that indicates the amount that is picked up from the point of x-ξ, 

moves about ξ, and stops at x. Regarding the pick-up rate ps, the relationship of Eq. (4) is established by the 

experimental results of Nakagawa and Tsujimoto (1979). From this relationship, it can be seen that the pick-up 

rate and the bottom shear stress are proportional. 
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The shear stress in bottom surface is expressed as Eq. (5) proposed by Hayashi (1970). 
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Hayashi (1970) showed that it is important to reflect the effect of the local gradient of the riverbed on the phase 

shift that occurs between the shear stress and the riverbed shape. The parameter representing the effect is α. The 

local velocity u0 uses the perturbed velocity component, and the perturbation component is proportional to the 

first order of the riverbed height. Eq (6) and (7) expresses the pick-up rate. 
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When the Eq. (6) and (7) are Taylor-expanded and substituted into the Eq. (3). Using the following Eq. (9), Eq. 

(10) is obtained. 
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Here, in means the nth moment of the probability density function ( )Xf   of the step-length, and the finally 

obtained Eq. (10) is a small-scale riverbed wave equation using the probability density function of the step-

length. The terms on the left side of this equation represent the advection, diffusion, dispersion and dissipation 

effects, which depend on the moment of the step-length probability density function. The moment of each order 

represents the mean, variance, skewness, and kurtosis. The first term on the left is an unsteady term, and the 

second is an advection term. This term is determined by the average value of step-length. The third term is the 

diffusion term, and the diffusion coefficient appears as the difference between the variance and the expected 
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value. In addition, a negative diffusion coefficient means instability of the system, which is a condition for the 

generation of riverbed waves. Therefore, the larger the riverbed gradient effect α and the flow velocity, the 

higher the deposit rate, and the larger the sand waves grow. Become. The fourth term is the variance term, and 

the variance effect expressed by the difference between skewness and variance. The fifth term is the dissipation 

term, which expressed by the difference between skewness and kurtosis. The advection of sand waves is 

deterministic and the effects of diffusion, dispersion and dissipation are determined by deterministic physical 

parameters and moment functions. That is, the irregularity of sediment transport represented by the appearance 

of moments up to the fourth order, and the sediment transport information on the upstream side is transmitted 

to the downstream side with a certain probability according to the exponential distribution of the step-length. If 

the probability density function of the step-length is not a distribution function but a delta function, the step-

length is deterministic. From such a deterministic point of view, Yamada and Ikeuchi (1987) proposed a small-

scale riverbed wave equation based on hydraulic principles. 
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where, α: riverbed gradient effect, δ: average step-length, m: proportional coefficient of sediment transport equation 

 

Eq. (11) is the governing equation for riverbed waves derived from a deterministic point of view, and is in the 

form of a nonlinear partial differential equation. This equation consists of deterministic parameters for advection, 

diffusion, dispersion and dissipation effects. In this equation, the first term on the left side is an unsteady term 

related to riverbed height, and the second term is an advection term. This term causes the non-linearity of the 

riverbed wave, which results in a sloping riverbed form. The third term is the diffusion term. If the diffusion 

coefficient takes a negative value, the riverbed wave becomes unstable, meaning the generation of the riverbed 

wave. The diffusion coefficient is expressed by the difference between the two parts, and the effect of shifting 

the distribution of bottom shear stress on the riverbed shape, or the effect of α on the effect of riverbed gradient 

and the effect of sediment transport lagging upstream. The δ represents the magnitude of the two effects 

determines the generation of riverbed waves. In other words, the diffusion coefficient is a condition for 

generating riverbed waves. The fourth term is the variance term, which indicates that the forward tilt of the sand 

wave is dispersed by the occurrence of short wavelengths. The fifth term is the dissipative term, which acts to 

suppress the growth of the riverbed wave itself, meaning the effect of restoring the instability of the system due 

to negative diffusion. 

3. DISCUSSIONS 

 
Figure 2. Structure of basic formula in stochastic process theory (Van kampen, 2007) 

 

Figure 2 shows the structure of various basic equations used when dealing with physical quantities in 

consideration of stochastic theory. There is a close relationship among the equations in a variety of approaches. 

Here, instead of understanding the stochastic process of one random variable, the Chapman-Kolmogorov 

equation using the Markov process and the transition probability transformed in differential form to observe the 

change in the density distribution of the random variable, and the master equation is obtained. The formula 

represents a discrete stochastic phenomenon that follows a Poisson process called a jump process, and means 

jump of a random variable. If jump is small, the Kramers-Moyal equation is obtained. The characteristics of 

random variables in such a stochastic process are considered in the case of sediment transport. Einstein (1950) 

proposed a zig-zag model based on the Poisson process for bed load motion in the moving bed phenomenon, 
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and found that the step-length of sand particles caused by flowing water behaves exactly like jump in the master 

equation. Therefore, if the pick-up rate is completely white noise-like, the diffusion type Fokker-Planck equation 

will be obtained. , Which corresponds to the higher-order Fokker-Planck equation. As shown in Figure 2, if the 

Kramers-Moyal expansion expanded to the fourth order without using white noise, a higher-order Fokker-

Planck equation such as Eq. (12) is obtained. 
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Here, an is determined by giving a distribution function. In the case of sediment transport, an corresponds to a 

step-length distribution. The Eq. (10) is derived from the sand particle scale and Eq. (12) is derived from the 

micro scale, which is a random variable, and the jump phenomenon of the random variable is regarded as the 

saltation phenomenon of sand particles. The Fokker-Planck equation is a type of coarse-graining that describes 

the motion of many particles from the Langevin equation that describes the motion of a single Brownian particle. 

If the time scale is coarse-grained with such coarse-graining, it becomes a Markov process. Therefore, the small-

scale riverbed wave equation using the distribution function in Section 2 is an equation having characteristics 

of Markov process like the motion of Brownian particles. 

4. CONCLUSIONS  

In this study, a small-scale riverbed wave equation using a step-length distribution function was derived. When 

the random characteristics of the sediment transport expressed as moments and expressed again as expected 

values in terms of quantities determined deterministically, the generation of riverbed waves by a mechanism 

similar to the deterministic equation based on hydraulic principles. In addition, from the viewpoint of stochastic 

process theory in statistical mechanics, the jump process of random variables can be regarded as saltation motion 

of sand particles, and corresponds to the higher order Fokker-Planck equation. This study provides a 

mathematical basis for explaining the relationship between the different scales and coarse-graining when 

explaining the sand wave scale from the sand particle scale in sediment transport. This can be considered as a 

general theory of pattern formation in sand wave. 
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