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ABSTRACT 

The Stochastic Theory has shown that the sediment particles 2-D trajectories ω (x, z, t) result from the 

combination of random 1-D series of movement periods: (i) an alternating series of downstream longitudinal 

displacements intercalated by time periods when the particle does not move in this direction or sense; (ii) an 

alternating series of descendent vertical displacements intercalated by periods when the grain does not move 

towards the bed. These series are defined by Mobility Functions: λx1; λz1; λt1 and λt2, which analytical 

expressions describe the instantaneous and punctual movements of single particles. Thus, the bed and 

suspended load are both described by the same Stochastic Theory. The Objectives of this article are to present: 

(1) the 2-D longitudinal and vertical models; (2) the experimental devices used for the study of bed and 

suspended longitudinal movements with vertical transfers; and (3) the importance of temporal and spatial 

intensity functions, in the Stochastic Processes models’ creation. Experimental results obtained in open 

channel flows with radioactive and fluorescent tracers were used, where the mobile bed layer behaves: (i) as a 

reflective barrier of fine sediments of varying concentrations and of different sizes; (ii) as a source for bed 

load movements of uniform sand; (iii) as a barrier of sediment absorption; and (iv) as a simultaneous barrier of 

absorption and reflection of sediments. A software SPICON - Stochastic Processes with Instantaneous and 

CONtinuous injections was developed to study the Homogeneous Poisson Models. 
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1. INTRODUCTION 

For several years, the authors among others (Einstein, 1937; Wilson-Jr, 1972, 1987, 2012; Vukmirović, 1975; 

Vukmirović and Wilson-Jr, 1976, 1977; Todorović et al, 1976; Hanno, 1979; Wilson-Jr and Vukmirović, 

1981; Monteiro and Wilson-Jr, 2002, 2003; Monteiro, 2004; Wilson-Jr and Monteiro, 2016, 2019) have been 

dedicated to the development and applications of random models in laboratory channels with sediment labeled 

with radioisotopes, in streams and in rivers with fluorescent and radioactive tracers, simulating pollutants and 

sediments, respectively. The studies performed by these authors are summarized in the Figure 1. 

The Theory of Stochastic Processes proposes a kinematic analysis of the movements of the liquid and solid 

phases, while considering the turbulent characteristics of the flow. Thus, problems related to: (i) the 

nonlinearity of the equations; (ii) the complexity of liquid and solid interactions; and, (iii) the lack of 

knowledge of the mutual interference of the movements of the two phases; are circumvented. 

1.1 Intensity of Grain Mobility Functions  

The mathematical development that characterize the sediment movement as stochastic processes can be 

followed through the works of Wilson-Jr (1972, 1987), Vukmirović (1975), Hanno (1979) and Monteiro 

(2004). The authors elaborated a synthesis of this development, which are periodically updated, for 

improvements and applications of the theme (Wilson-Jr and Monteiro, 2016, 2019). 

The bed and suspended load movements of sediment and contaminant particles in open channels flows 

characterize stochastic process, where the elementary events are the single grains’ trajectories. They are 

dependent of the turbulent hydrodynamic process. These trajectories or achievements of the single particles (as 

shown in Figures 2 and 3) or of the group of particles are analyzed by Lagrangean or Spatial, and Eulerian or 

Temporal Descriptions. 

Two stochastic processes are considered: 

 �⃗� (𝑡, 𝜔) =   [𝑋(𝑡, 𝜔), 𝑌(𝑡, 𝜔), 𝑍(𝑡, 𝜔)]  =  𝑋𝑡𝑖(𝜔);  𝑖 = 1, 2, 3  (1) 
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that characterizes the evolution of the particle's position vector as a function of time, which longitudinal, 

lateral and vertical components are X (t, ω), Y (t, ω) and Z (t, ω), respectively. The second 3-D stochastic 

process: 

 𝑇(𝑥, 𝑦, 𝑧, 𝜔) =  [𝑇(𝑥, 𝜔), 𝑇(𝑦, 𝜔), 𝑇(𝑧, 𝜔)]  =  𝑇𝑥𝑖(𝜔);   𝑖 = 1, 2, 3 (2) 

characterizes the particle's passing time by the point of coordinates (x, y, z). T (x, ω), T (y, ω) and T (z, ω) 

represent the times spent by the particle to travel the distances 0x, 0y and 0z, respectively, and ω represents 

the trajectory or the sediment particle achievements. 

 

 
Figure 1. Studies performed with tracers on the sediment 

movement by the Theory of Stochastic Processes 

(Wilson-Jr and Monteiro, 2019) 

 

Figure 2. Trajectories of a suspended sediment grain: 

elementary events of stochastic processes: 

�⃗� (𝑡, 𝜔) and 𝑇𝑥𝑖(𝜔);   𝑖 = 1, 2, 3 

(Wilson-Jr and Monteiro, 2016) 

Xti (ω) and Txi (ω) processes can be defined by their Probability Distribution Functions: 

 𝐹𝑡(𝑥𝑖)  =  𝑃{𝑋𝑖(𝑡, 𝜔)  ≤  𝑥𝑖}; 𝑥𝑖 ≥ 0;   𝑖  =  1, 2, 3 (3) 

 𝑄𝑥𝑖(𝑡)  =  𝑃{𝑇(𝑥𝑖 , 𝜔)  ≤  𝑡};   𝑡  ≥ 0;   𝑖  =  1, 2, 3 (4) 

which are related to each other by Todorović's Equation (5) (Todorović et al. 1966): 

 𝐹𝑡(𝑥𝑖)  =  1  − 𝑄𝑥𝑖(𝑡);   𝑥𝑖  ≥ 0;   𝑖  =  1, 2, 3 (5) 

It was shown that the Probability Distribution Function of these random processes can be expressed in terms 

of two pairs of Approximate Functions Ft1 (xi) and Ft2 (xi); Qx1i (t) and Qx2i (t); i = 1,2,3, respectively, such that: 

 0  ≤  𝐹𝑡1𝑖(𝑥𝑖)  ≤  𝐹𝑡𝑖(𝑥𝑖)  ≤ 𝐹𝑡2𝑖(𝑥𝑖)  ≤  1;   𝑖 = 1, 2, 3  (6) 

 0  ≤  𝑄𝑥2𝑖( 𝑡)  ≤  𝑄𝑥𝑖(𝑡)  ≤ 𝑄𝑥1𝑖(𝑡)   ≤  1;  𝑡  ≥ 0;   𝑖  =  1, 2, 3 (7) 

In each direction, e. g. in the longitudinal direction 0xi = 1, where xi = x1 = x, the Approximate Distribution 

Functions Ftj (x) and Qxj (t), j = 1,2 can be explained as functions of two new stochastic processes 𝐺𝑛
0,𝑥

and 𝐸𝑛
0,𝑡

 

from the same elementary events ω: 

 𝐺𝑛
0,𝑥  =   {𝜇0,𝑥  =  𝑛} (8) 

which represents the medium number of grain displacements, µ0, x over the distance [0, x], and,  

 𝐸𝑛
0,𝑡  =   {𝜂0,𝑡  =  𝑛} (9) 

the medium number of grain displacements, η0, t over the time period [0, t]. 𝐺𝑛
0,𝑥

 and 𝐸𝑛
0,𝑡

 are Markovian 

Processes with similar properties. So, for the set 𝐺𝑛
0,𝑥

, it has: 
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   when x → 0 (10) 

where ϑ(Δx) is a grain first order infinitesimal displacement distance. The 𝐺𝑛
0,𝑥

and 𝐸𝑛
0,𝑡

 occurrence 

probabilities are solutions of the system of equations derived from these properties: 
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 {

𝜕

𝜕𝑥
𝑃{𝐺𝑘

0,𝑥}  =  𝜆2(𝑥, 𝑘 − 1) 𝑃{𝐺𝑘−1
0,𝑥 }  − 𝜆2(𝑥, 𝑘) 𝑃{𝐺𝑘

0,𝑥}

𝜕

𝜕𝑥
𝑃{𝐺0

0,𝑥}  =  − 𝜆2(𝑥, 0) 𝑃{𝐺𝑘
0,𝑥}

 (11) 

with the following initial conditions: 

 𝑥 = 0    {
 𝑃{𝐺0

0,𝑥}  =  1 

 𝑃{𝐺𝑘
0,𝑥}  =  0;  𝑘 ≥ 1 

 (12) 

Similar analytical expressions to the Equations (10), (11) and (12) are obtained for the 𝐸𝑛
0,𝑡

 process. The 

solution of these differential equations yields the probability laws for the numbers of displacements in time 

and spatial intervals. Two functions λ1 (t, n) and λ2 (x, n) appear, which describe the sediment particle 

mobility, in time and in that particular direction xi=1 = x1 ≈ x. Considering the three directions of the orthogonal 

axes 0xi, i = 1, 2, 3, three pairs of Mobility Functions λ1i (t, n) and λ2i (xi, n) are obtained, which describe the 

sediment grains 3-D movements, in time and space. In each xi direction it has been:  

 {
𝜆1𝑖(𝑡, 𝑛)   = 𝑙𝑖𝑚𝛥𝑡→0  

𝑃{𝐸1𝑖
𝑡,𝑡+𝛥𝑡

|𝐸𝑛𝑖
0,𝑡

}

𝛥𝑡

𝜆2𝑖(𝑥𝑖 , 𝑛) = 𝑙𝑖𝑚𝛥𝑡→0  
𝑃{𝐺

1𝑖

𝑥𝑖,𝑥𝑖+𝛥𝑥𝑖|𝐺
𝑛𝑖

0,𝑥𝑖}

𝛥𝑥𝑖

 i = 1, 2, 3 (13) 

The general expressions for 1i and 2i, i = 1, 2, 3; were obtained by Vukmirović (1975) and Wilson-Jr (1987, 

2012) considering the bedload movement of single grains labeled with radiotracers. They considered the 

mobility of the particle as a function of time, of the distance traveled in one direction and of its past 

performance in time (n) and distance (k), in each direction (i): 
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
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 i = 1, 2, 3 (14) 

where: 1i and 2i are the particle mobility factors in each time t in the direction i, and in a certain position xi, 

respectively. 

 These functions are obtained from experiments performed with liquid and solid particles of tracers: 

radioactive, dyes and chemicals, in bedload and/or suspended-load movements. Wilson-Jr (1987, 2012) 

classified the Stochastic Models according to their mobility functions in Homogeneous Poissonian Models 

(constant mobilities), No-Homogenous and No-Poissonian, which are indicated in Figures 3 and 4. 

With the experimental device shown in Figures 5 and 6, the movements of suspended sediment and of 

bedload, with vertical transfers, were recorded. Thus, we obtained a collection of original data for the study of 

random movements 1-D and 2-D of sediments, cohesive and non-cohesive, and analysis of the evolution of a 

group of particles that moves sometimes suspended in the middle of the liquid phase, sometimes by dragging 

on the movable bed of a river. Particularly, for the case of suspended movement, the grain mobility functions 

in the longitudinal and vertical directions assume constant values and the resultant 2-D Stochastic Models are 

also Homogeneous Poissonian. 

 

 
Figure 3. Stochastic models of the bedload 

movements (Wilson-Jr, 1987)  

 

 
Figure 4. Models resulting from expressions of  

 λ1 (t, n) and λ2 (x, m)  (Wilson-Jr, 2012) 
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Figure 5. Immersion and detection system of bed and 

suspended movements of fine sediments in a  

laboratory channel.  

(Wilson-Jr, 1987) 

 

 

 
Figure 6. Experiments carried out in streams with 

sediments labeled with radioisotopes.  

(Wilson-Jr, 1987) 

2.  OBJECTIVES 

The main objectives of this article are to present: (1) the 2-D longitudinal and vertical models; (2) the 

experimental devices used for the study of bed and suspended longitudinal movements with vertical transfers; 

and (3) the importance of temporal and spatial intensity functions, in the Stochastic Processes models’ 

creation. 

3. 1-D HOMOGENEOUS POISSONIAN MODELS 

When the probability of the sediment grain make a displacement in the time interval [t, t+t] or in the space 

[x, x+x] does not depend, neither on the time, nor on the distance traveled, nor on the number of previous 

displacements, it is said that the particle has no memory and the values of the mobility intensity are constant in 

time and space: 1(t, n) = 1 and 2(x, n) = 2. 

Equations (10), (11) and (12) are simplified and the probabilities of occurrence of the sets Gn
0, x and En

0, t are 

obtained by recurrence: 
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that is, expressions of Poissonian probabilities with constant parameters. Therefore, the models are called 

Homogeneous Poissonian Models. From Poisson's Law: (i) 1/λ1 is the average duration of a period of non-

displacement (rest period for bedload longitudinal movement); (ii) 1/λ2 is the average distance traveled by the 

particle during a positive displacement, and (iii) up = λ1/λ2 is the average transport speed of sediment or 

pollutant particles (Table 1). 

Wilson-Jr (1987, 2012) compared the mobilities of sediment grains of the bed and in suspension, and found 

that the values of the average displacements (1/λ2) are of the same order of greatness, while the average 

duration of the periods of non-displacement or rest (1/λ1) is much larger in the bedload than in the suspended 

movement, which explains its lower mobility. 

For the applications of the Homogeneous Poissonian Models, Wilson-Jr and Monteiro (2019) developed one 

software called SPICON - Stochastic Processes with Instantaneous and CONtinuous injections, which 

analyzes the Eulerian and Lagrangean movements of pollutants, in suspension and of the mobile bed layer. 

Among other properties, the program calculates the statistical characteristics of the Stochastic Processes that 

describe the movement of the groups of particles, such as the probability density functions of the grain 

positions over time (and their moments), as illustrated in the Figure 7. 

The experiments in the Paraíba do Sul River aimed the determination of the solute pollutants transport and 

dispersion, in a stretch between Volta Redonda and Barra do Piraí cities, in the Rio de Janeiro State. Four 

campaigns were performed, determining the transit time’s curves of dyes concentration across six sections, 

distant 2.6 to 39.6 km from the injection section.  
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Table 1. Mobility of fine sediment grains in the bed and 

suspension. Homogeneous Poisson Models 

(Wilson-Jr, 1987, 2012) 

 
• 1/λ2 = average distance of a grain displacement. 

• 1/λ1 = average period of a non-displacement. 

• up = λ1/λ2 =average velocity of the sediment transport.  

 
Figure 7. Experiments performed in the Paraíba do Sul 

River: Instantaneous and continuous dye immersions 

(Rhodamine). State of Rio de Janeiro, Brazil. 

4. 2-D HOMOGENEOUS LAGRANGEAN STOCHASTIC POISSONIAN PROCESS 

After several successful 1-D applications, Wilson-Jr and Monteiro (2016, 2019) have devoted to studies of the 

2-D movements in suspension - longitudinal and vertical - of cohesive and no-cohesive sediments, whose data 

have been obtained in the prismatic channel of the LCHF (Figure 5): 12.0 m long, 40.0 cm wide and 60.0 cm 

deep, and in nature (Figure 6). 

For the suspended movement, the grain mobility functions in the longitudinal and vertical directions assume 

constant values and the resultant models are Homogeneous Poissonian. So, their expressions are: 

 
( )

( )

, .

, .

i i

i i i

t n const

x k const

 =  =

 =  =

1 1

2 2

 i = 1 and 3 (17) 

which means that the probability of the grains’ displacements, in time [t, t+t], and distance  [x, x+x], t and 

x tending to zero, are independent of time, particle position and of previous displacements, i.e., independent 

of the particle history. This movement is called out of memory. 

The Density Probability Functions of the particles in time t is given by equations which characterize the 

Homogeneous Poissonian Random Processes (Wilson-Jr and Monteiro, 2016, 2019): 

 𝑓𝑡(𝑥, 𝑧)  =  
𝜕2𝐹𝑡(𝑥,𝑧)

𝜕𝑥 𝜕𝑧
 =  𝑓𝑡(𝑥) 𝑓𝑡(𝑧) (18) 

 0.0  ≤  𝑓𝑡1(𝑥𝑖)  ≤  𝑓𝑡(𝑥𝑖)  ≤  𝑓𝑡2(𝑥𝑖)  ≤  1.0      𝑖  =  1,  3 (19) 
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  𝑖  =  1, 3 (20) 

Wilson-Jr and Monteiro (2019) presented analytical expressions of the approximate statistical properties of the 

stochastic process Xt (x, z), for the cases of instantaneous and continuous immersions. Among them are the 

Probability Density Functions ftj (x, z); the Probability Distribution Ftj (x, z), the equations of the Average 

Position Mtj (x, z) and the Variance of the Positions of the particles [(Stxzj)2], for j = 1, 2. As an example, the 

analytical expressions of the Approximate Probability Density Functions ftj (x, z), j = 1, 2 are presented, for the 

cases of instantaneous and continuous immersions, in the free surface of the flow, respectively. The originality 

is the substitution of the inferior and superior approximations of the Probability Density Functions ftj (x, z), 

j = 1, 2 and other approximate statistical characteristics, by the expressions of their average values, ftm (x, z), 

htm (x, z), Ftm (x, z) and Htm (x,z) for example, for cases of instantaneous and continuous immersions, 

respectively, as shown as following: 

4.1 Instantaneous Immersion Case 

Mean Probability Density Function ftm (x, z) 

 𝑓𝑡(𝑥, 𝑧)  ≅ 𝑓𝑡𝑚(𝑥, 𝑧)  ≅  
1

2
[𝑓𝑡1(𝑥, 𝑧)  + 𝑓𝑡2(𝑥, 𝑧)] (21) 
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 {
𝑓𝑡1(𝑥, 𝑧)  =  𝜆21 𝜆23 𝑒

−𝜆11𝑡 −𝜆21𝑥 𝑒−𝜆13𝑡 −𝜆23𝑧  ∑ ∑
(𝜆11𝑡)𝑛

𝑛!

∞
𝑘=0

∞
𝑛=0

(𝜆21𝑥)𝑛

𝑛!

(𝜆13𝑡)𝑘

𝑘!

(𝜆23𝑧)𝑘

𝑘!

𝑓𝑡2(𝑥, 𝑧)  =  𝜆21 𝜆23 𝑒
−𝜆11𝑡 −𝜆21𝑥 𝑒−𝜆13𝑡 −𝜆23𝑧 ∑ ∑

(𝜆11𝑡)𝑛+1

(𝑛+1)!

∞
𝑘=0

∞
𝑛=0

(𝜆21𝑥)𝑛

𝑛!

(𝜆13𝑡)𝑘+1

(𝑘+1)!

(𝜆23𝑧)𝑘

𝑘!

 (22) 

Mean Probability Distribution Function Ftm (x, z) 

 𝐹𝑡1(𝑥, 𝑧)  ≤   {𝐹𝑡(𝑥, 𝑧) ≅ 𝐹𝑡𝑚(𝑥, 𝑧) ≅
1

2
[𝐹𝑡1(𝑥, 𝑧)  + 𝐹𝑡2(𝑥, 𝑧)]}  ≤ 𝐹𝑡2(𝑥, 𝑧) (23) 

 {
𝐹𝑡1(𝑥, 𝑧) =  𝑒−𝜆11𝑡 −𝜆21𝑥 𝑒−𝜆13𝑡 −𝜆23𝑧  ∑ ∑

(𝜆11𝑡)𝑛

𝑛!

∞
𝑘=𝑛

∞
𝑛=0

(𝜆21𝑥)𝑘

𝑘!
 ∑ ∑

(𝜆13𝑡)𝑚

𝑚!

∞
𝑝=𝑚

∞
𝑚=0

(𝜆23𝑧)𝑝

𝑝!

𝐹𝑡2(𝑥, 𝑧) =  𝑒−𝜆11𝑡 −𝜆21𝑥 𝑒−𝜆13𝑡 −𝜆23𝑧  ∑ ∑
(𝜆11𝑡)𝑛+1

(𝑛+1)!

∞
𝑘=𝑛

∞
𝑛=0

(𝜆21𝑥)𝑘

𝑘!
 ∑ ∑

(𝜆13𝑡)𝑚+1

(𝑚+1)!

∞
𝑝=𝑚

∞
𝑚=0

(𝜆23𝑧)𝑝

𝑝!

 (24) 

4.2 Continuous Immersion Case 

Mean Probability Density Function htm (x, z) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )  ( )z,xhz,xhz,xh
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1
z,xhdzfxf
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z,xhz,xh 2t2t1tmt

t
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t1t
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
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Mean Probability Distribution Function Htm (x, z) 
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The Distribution Functions Ft- (x) and Ft- (z) are obtained from the 1-D models’ approximate equations in the 

longitudinal and vertical directions, respectively, that is, from the 1-D Homogeneous Poissonian equations 

systems with instantaneous immersion (Wilson-Jr and Monteiro, 2019). 

5. SOME RESULTS WITH 2-D HOMOGENEOUS POISSONIAN MODELS 

5.1 The Mutually Independent 1-D Stochastic Process 

The hypothesis that has allowed to successfully develop the 2-D Stochastic Models is the independence of the 

longitudinal and vertical movements in turbulent open flows. This property was described by Equation (18). It 

allows us to analyze the 1-D movements independently of each other and determining the values of the grain’s 

mobility by simple equations, which may be adjusted to field surveys (Wilson-Jr and Monteiro, 2019). 

5.2 Lagrangean and Eulerian Results 

Data obtained in a rectangular prismatic channel of the LCHF (Figure 5) have been used to validate and 

calibrate the 1-D and 2-D models. Figures 8 and 9 show results for uniformly distributed lateral injections on 

the free surface, and continuously during the time interval [0, td = 120 s].  

The plumes in Figure 8 correspond to the 2-D movements of fine sediments depending on the diameter of the 

grain. The particles are supposed to have the same longitudinal mobility of the liquid and the vertical mobility 

proportional to their diameter. The figure clearly illustrates: the variation of vertical grain mobility according 

to their diameters, and how the particles are integrated into the flow and on the riverbed.  

The plume in Figure 9 indicates the 2-D behavior of uniform sediments (D50 = 0.040 mm). The graphs 

represent: (i) the Lagrangean 2-D field of normalized concentration C (x, z, t), in a channel 20.0 m long and 

2.0 m deep, in the instant t = 100.0 s; (ii) Lagrangean 1-D vertical profiles of sediment concentration in 

sections x = 3.0; 10.0 and 17.0 m in the instant t = 100.0 s, and (iii) the Eulerian evolutions of the 

concentrations, in the levels z = 0.4 and 0.8 m, in the three sections. 

5.3 The Bed Mobile Layer Roles 

The fluid models the moving bed of the flow while it has its hydrodynamic characteristics modified by the 

forms that it has modeled itself. Thus, hydrodynamic and mass transfer studies must be carried out 

simultaneously. For solid particles of same physical and mineral properties, it is expected that the variables 
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that intervene in the bedload and suspended load movements are related to each other, at least in their common 

frontier: the mobile bed layer. Indeed, for the development, calibration and validation of 1-D and 2-D 

Stochastic Processes of sediment and pollutant which move as bedload and/or suspended-load with vertical 

transfers, there is a set of experimental results obtained in laboratory channels, creeks and rivers, using tracers 

where the mobile bed behaves in four distinct ways; as a(n):  

(i) Supply source of sediment grains which move in contact with the bed and/or in suspension, for example, 

as ripples and/or dunes. 

(ii) Absorption barrier of suspended sediments touching the mobile bed. Figure 10 presents the sediment 

deposits of a fine sand plume (D = 0.125 mm), injected on the free surface, at a constant rate, during the 

interval [0, td = 200 s] in flows of varying depths. The deposit at the bottom is a function of the diameter 

and of the specific weight of the grain, and of the hydrodynamic properties of the flow, which define the 

vertical λ1z and λ2z, and longitudinal λ1x and λ2x mobilities. Figure 11 illustrates the longitudinal 

distribution of sediment deposition of various diameters at the bottom of an open channel flow. The 

weighted composition of the final deposit of the material injected into the free surface was also presented. 

They correspond to the case of reflection 0.0 % in Figure 12.  

(iii) Simultaneous barrier of absorption and reflection. Figure 12 illustrates cases in which 100.0; 80.0; 

60.0; 40.0; 20.0 and 0.00% of fine sediments (D = 0.0125 mm) were absorbed by the riverbed.  

(iv) Reflection barrier of suspended sediments that touch the bed under the effect of turbulence and 

gravity, and return completely to the suspension, as the case of 100.0 % reflection in the Figure 12. 
 

 

 
 

Figure 8. Bidimensional movements of fine sediment 

injected continuously over a period, on the watercourse’s 

free surface as a function of the grain diameter. 

(Wilson-Jr and Monteiro, 2019) 

 
Figure 9. Lagrangean and Eulerian descriptions of  

uniform fine sediment’s concentration C (x, z, t). 

(Wilson-Jr and Monteiro, 2016, 2019). 

6. CONCLUSIONS 

The Theory of Stochastic Processes shows that the 2-D (longitudinal and vertical) trajectories of sediment and 

pollutant particles result from the combination of 1-D independent series of longitudinal and vertical 

displacements defined by the Mobility Intensity Functions: λx1; λz1; λt1 and λt2, which analytical expressions 

describe the instantaneous and punctual movements of single particles. 

This theory is so powerful that the classic Fickian diffusion and dispersion equations of suspended movements 

are only particular cases of Stochastic Processes, which are characterized by constant values of the Mobility 

Intensities, that is, by Homogeneous Poissonian Processes. However, when the mobilities are not constant, 

complex models must be used, such as the No-Homogeneous Poissonian, and No-Poissonian Models.  

Results summarized in Figure 1 have been used for the development and understanding of the dynamics of the 

movement of sediments and pollutants in open-channel flows. The main phenomena to which the particles are 

subjected, such as turbulent diffusion, differentiated dispersion due to the gradients of speed field, 

sedimentation, solid material deposits and bed erosion, can be described with the help of Stochastic Processes.  

For these investigations and applications, there is a collection of data on the movement of sediments and 

pollutants obtained in laboratory channels and nature, with the use of radioactive, dye and chemical tracers. 
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Figure 10. Sediment deposition of D = 0.125 mm in 

flows of varying depths. Immersion Interval 

[0, td = 200 s] (Wilson-Jr and Monteiro, 2019) 

 

 

 
Figure 12. Mobile bed as a barrier of reflection (and/or 

absorption) of sediment grains (D = 0.0125 mm) continuously 

injected on the free surface, during an interval [0, td]. 

 

 
Figure 11. Longitudinal profiles of sediment 

deposits as a function of grain diameter. 
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