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ABSTRACT

Computation of the Basset history force can be very expensive, and hence, in past studies, either the
whole part or some fraction of the history has been neglected even in the cases where its contribution
may be important. Here the effects of the Basset history force on preferential concentration of small
particles in a homogeneous isotropic turbulence under a wide range of the particle-to-fluid mass density
ratio (from 0 up to 10000) have been investigated by direct simulations of the Navier-Stokes equations.
The Basset force is numerically approximated by the method of van Hinsberg et al. (J. Comput. Phys.
230 (2011) 1465). Compared with the traditional window method where the Basset integral is evaluated
only over the latest period of size twin, the method of van Hinsberg that approximates the tail of the
Basset force kernel by exponential functions is found to give a better result by using a much shorter
(typically, two-order-of-magnitude smaller) twin. It is clearly revealed that the presence of the Basset
force weakens the level of preferential concentration to some extent, especially under the conditions of
the mass density ratio of around 1.5− 10 for heavy particles and smaller than 0.7 for light particles.
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1. INTRODUCTION

The motion of a small isolated rigid spherical particle in a non-uniform velocity field is well described
by the Maxey-Riley (MR) equation (Maxey and Riley, 1983):
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Here a denotes the particle radius, mp the particle mass, up the particle velocity, uf(x, t) the fluid
velocity, µ the dynamic fluid viscosity, mf the mass of fluid element with a volume equal to that of
the particle, g the gravitational acceleration, and ez the unit vector in the opposite direction of the
gravitational force. The last term on the RHS denotes the Basset history force, the most time- and
memory-consuming part. Hence, in past studies, either the whole part or some fraction of the history
has been neglected even in the cases where its contribution may be important.

By splitting the added mass term, the equation can be rewritten as (see van Hinsberg et al. (2017))
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where β ≡ 3/(2γ + 1), γ ≡ mp/mf , τ
∗
p ≡ (3τp/(3− β)), and τp(≡ mp/(6πaµ)) is the particle response

time. It is noteworthy that the pressure-gradient force (the second term on the RHS of eq. (2)) fP and



Table 1. Relation among β,
√
β, and the particle-to-fluid mass density ratio γ.

γ ∞ 1000 100 10 3 1 0.9 0.5 0.1 0.01 0

β 0 0.0015 0.0149 0.1429 0.4285 1 1.0714 1.5000 2.5000 2.9412 3

β1/2 0 0.0387 0.1222 0.3780 0.6547 1 1.0351 1.2247 1.5811 1.7150 1.7321

the Basset force (the last term) fB are proportional to β and
√
β, respectively. Table 1 shows how β

and
√
β behave as a function of γ, the particle-to-fluid mass density ratio. When the particle is much

heavier than the surrounding fluid (i.e., γ → ∞), only the Stokes drag force fSt and the gravity force
fG remain on the RHS of eq. (2). With decrease in γ, fB first starts to compete with fSt and fG. When
decreasing γ even further, fP also becomes important. In section 2.2, an example where this argument
does hold is presented.

Here we examine the impact of the Basset history force on preferential concentration of small particle
(i.e., the accumulation of particles within specific regions of instantaneous turbulence fields) in a ho-
mogeneous isotropic turbulence. The mass density ratio γ is changed systematically from 0 (ultimately
light particle compared with the surrounding fluid) up to 10000 (significantly heavy particle). The
Basset force is approximately computed by the method of van Hinsberg et al. (2011), whose essential
characteristic is to approximate the tail of the Basset force kernel by exponential functions.

2. APPROXIMATION TO BASSET HISTORY FORCE AND ITS VALIDATION

2.1 Approximation to Basset history force

We employed the method proposed by van Hinsberg et al. (2011) to calculate the Basset history force.
Here the method is described briefly. For further details, the reader is referred to the paper.

To simplify the mathematical expression, we introduce the following variables and functions: f ≡
uf−up, g ≡ df(τ)/dτ , KB(t) ≡ 1/

√
t, and c′B ≡

√
(3β)/(πτ∗p). Then the Basset history force appearing

in eq. (2) can be rewritten as

fB(t) = c′B

∫ t

τ=−∞
KB(t− τ)g(τ)dτ. (3)

The main difficulty in computing the Basset force can be attributed to the fact that the values of g(τ)
of all the particles need to be hold over τ ∈ [−∞, t] and that the integral appearing in eq. (3) needs to
be calculated at every time step. Therefore, in most of the past studies that took the Basset force into
account, the integral was evaluated only over the latest period of size twin (e.g., Sugiyama et al., 2004;
Bombardelli et al., 2008):

fB(t) ≈ fB,win(t) ≡ c′B

∫ t

τ=t−twin

KB(t− τ)g(τ)dτ. (4)

Hereinafter this approach is referred to as the window method. The kernel KB(t), however, decays very
slowly for t → ∞ and therefore twin needs to be chosen rather large in order for fB,win to approximate
fB accurately.

The Basset force can be split into two parts: the window part fB,win(t) and the remaining part (the tail
part) fB,tail(t) ≡ fB(t)− fB,win(t). Within the framework, the window method can be considered as the
approach where the Basset kernel for the tail part, Ktail, is set to be zero. van Hinsberg et al. (2011),
on the other hand, proposed to approximate Ktail as

Ktail(t) ≈
m∑
i=1

aiKi(t), Ki(t) =

√
e

ti
exp

(
− t

2ti

)
. (5)

Here ai, ti are positive constants and e is the Napier’s constant. The functionsKi(t) satisfy the following
properties: Ki(ti) = KB(ti) and dKi(ti)/dt = dKB(ti)/dt. Then the tail part of the Basset history
force fB,tail(t) can be expressed as:
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Table 2. List of the test cases examined in section 2.2 and the resultant absolute errors on up and fB
evaluated at t ∈ [998π, 1000π].

Run γ tw/π ∆t/π fB error(up) error(fB)
A-1-1 3 1 1/200 eq.(6) to fB,tail 3.57e−3 4.26e−3

-2 3 1 1/200 fB,tail = 0 2.01e−2 2.84e−2
-3 3 1 1/200 fB = 0 1.27e−1 1.80e−1

-2-1 10 1 1/200 eq.(6) to fB,tail 3.10e−3 3.71e−3
-2 10 1 1/200 fB,tail = 0 2.65e−2 3.75e−2
-3 10 1 1/200 fB = 0 1.36e−1 1.92e−1

-3-1 100 1 1/200 eq.(6) to fB,tail 1.42e−3 1.74e−3
-2 100 1 1/200 fB,tail = 0 1.66e−2 2.34e−2
-3 100 1 1/200 fB = 0 6.41e−2 9.07e−2

-4-1 1000 1 1/200 eq.(6) to fB,tail 5.04e−4 6.29e−4
-2 1000 1 1/200 fB,tail = 0 6.55e−3 9.21e−3
-3 1000 1 1/200 fB = 0 2.26e−2 3.20e−2

B-1-1 3 1 1/25 eq.(6) to fB,tail 2.79e−2 2.76e−2
-2 3 1 1/25 fB,tail = 0 3.67e−2 4.30e−2

-2-1 3 1 1/100 eq.(6) to fB,tail 6.60e−3 7.77e−3
-2 3 1 1/100 fB,tail = 0 2.12e−2 2.99e−2

-3 3 1 1/200 See runs A-1.
-4-1 3 1 1/400 eq.(6) to fB,tail 2.31e−3 2.62e−3
-2 3 1 1/400 fB,tail = 0 1.97e−2 2.79e−2

C-1-1 3 1/2 1/200 eq.(6) to fB,tail 3.62e−3 4.34e−3
-2 3 1/2 1/200 fB,tail = 0 2.93e−2 4.09e−2

-2 3 1 1/200 See runs A-1.
-3-1 3 4 1/200 eq.(6) to fB,tail 3.63e−3 4.32e−3
-2 3 4 1/200 fB,tail = 0 1.28e−2 1.78e−2

-4-1 3 10 1/200 eq.(6) to fB,tail 3.57e−3 4.28e−3
-2 3 10 1/200 fB,tail = 0 8.50e−3 1.16e−2

-5-1 3 40 1/200 eq.(6) to fB,tail 5.78e−3 6.32e−3
-2 3 40 1/200 fB,tail = 0 5.15e−3 6.83e−3

Now fi is split into two parts: fi−di that includes contributions from τ ∈ [t − twin −∆t, t − twin] (i.e.,
only one time step) and is directly integrated, and the remaining part fi−re. The latter can be easily
calculated using the value of fi at the previous time step:
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By utilizing the recursive formulation of eq. (7), contributions from the interval [−∞, t− twin −∆t] to
the Basset history force fB can be included with no explicit integration over the interval.

Look at van Hinsberg et al. (2011) for details of numerical integration of fB,win and fi−di. Coefficients ai
and t̃i (≡ ti/twin) are presented for m = 10 in the paper, and those values were employed in the present
study.

2.2 Validation of the method

Here accuracy and efficiency of the method proposed by van Hinsberg et al. (2011) has been critically
examined. An ordinary differential equation of the form
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has, under the condition of uf(t) = sin t, the theoretical solution (Sugiyama et al., 2004)

up(t) = vc cos t+ vs sin t, (9)

and the Basset force (the third term on the RHS of eq. (8)) can be expressed as
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Here vc and vs are given by

vc =
1

D

(
ab+

ac√
2
− b− c√

2

)
, vs =

1

D

(
a+

ac√
2
+ b2 +

√
2bc+ c2 +

c√
2

)
, (11)

D = b2 +
√
2bc+ c2 +

√
2c+ 1. (12)

Eq. (8) corresponds to eq. (2) with g = 0 when a = β, b = 1/τ∗p , and c =
√
3ab. In the following, we

consider the case of τ∗p = 2π, i.e., the effective particle relaxation time τ∗p is equal to the oscillation
period of the fluid velocity uf .

We have performed 26 different runs in total. Table 2 compiles the physical and numerical conditions,
and the root-mean-square errors in the particle velocity up and the Basset history force fB obtained
from each run. Since the lower limit of the integral in eq. (8) is −∞, the time integration must be
carried out for a long period of time. Here it was chosen to be 1000π (i.e., 500 oscillation periods in
uf), and the errors presented in table 2 were evaluated at t ∈ [998π, 1000π]. The present investigation
can be split into three cases: the influence of [A] the particle-to-fluid mass density ratio γ, [B] the time
increment ∆t, and [C] the length of time interval twin for the window part of the Basset force, fB,win,
were examined critically.

In runs A, the mass density ratio γ was changed between 3 and 1000, and the Basset force was (i)
approximated by the method of van Hinsberg et al. (2011), (ii) approximated by the window method
(i.e., fB,tail = 0), or (iii) neglected totally. Figure 1 shows the time evolutions of the solution up (left
panels) and each term of eq. (8) for t ∈ [998π, 1000π], along with the theoretical solutions. In the left
panels, up obtained from (i), (ii), and (iii) explained above are shown together. In the right panels, on
the other hand, only the results from (i) are presented. It can be clearly seen from the right panels
in figure 1 that, with decrease in the mass density ratio γ, first the Basset history force becomes no
more negligible and then the pressure-gradient force gets comparable to the Stokes drag force. This
behavior is in exact accordance with the argument derived from table 1. The left panels clearly reveal
the importance of the Basset force to reproduce the particle behavior accurately at γ ≤ 100. In the
following, we fix our attention to the case of γ = 3, where all the terms in eq. (8) are non-negligible.

The influence of the time increment ∆t on the prediction results was examined in runs B. Table 2 shows
that, with van Hinsberg’s method, the use of small ∆t yields accurate evaluation of the Basset force
and hence the particle velocity up. It, however, does not with the window method, since, with decrease
in ∆t, the tail part of the Basset history force fB,tail becomes larger than the error produced in the
numerical integration of the window part fB,win.

Finally the effect of twin was investigated in runs C. While the prediction accuracy of up gets worse
with decrease in twin by means of the window method, it is quite independent of the choice of twin with
van Hinsberg’s method. It is noteworthy that van Hinsberg’s method with twin = π/2 gives better
prediction than the window method with twin = 40π. It has been clearly demonstrated in the results
obtained from runs B and C that van Hinsberg’s method has a clear superiority to the traditional
window method in providing an accurate prediction with much less time and memory requirements.

3. PHYSICAL AND NUMERICAL DETAILS

We numerically solved the incompressible Navier-Stokes equations in a periodic box by the Fourier
spectral method and obtain homogeneous isotropic turbulence (HIT). Artificial forcing was implemented
to maintain the statistical stationarity of the turbulence (Yamazaki et al., 2002). Here a HIT of the
Taylor Reynolds number Reλ of about 42 was reproduced with 483 Fourier modes.

We assume that particles do not disturb the fluid flow and do not interact with other particles as well
(one-way coupling). We put different types of particles in the flow. Each type consists of 1.5 × 483

particles with the same physical properties. The particle Stokes number based on the Kolmogorov time
scale Sη ≡ τ∗p/τη is unity, and the gravity effect is neglected in the present study. The mass density
ratio γ was changed systematically from 0 up to 10000, which covers a wide range of conditions from
the ultimately light particle to a very heavy particle. The particles in a type were initially seeded at
random locations through the computational domain, and the initial distribution was applied to other
types as well. The initial particle velocity was set to be the local fluid velocity.
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Figure 1. Time evolutions of the solution up (left) and of each of the terms (right) of eq. (8), over
t ∈ [998π, 1000π].

4. RESULTS AND DISCUSSION

4.1 Incluence of numerical approximation to Basset history force

Here we show the importance of accurately calculating the Basset history force for clarification of the
physics of preferential concentration phenomena. We compared the computational results by means of
van Hinsberg’s method and the window method to approximate the Basset history force. Note that
the window part of the Basset history force fB,win was evaluated by the same method proposed in van
Hinsberg et al. (2011) in both approaches. We focus on the case of γ = 3, where all the terms in the
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Figure 2. Influence of parameter twin that defines the extent of contribution from fB,win, on the particle
void fraction Pv. (a): window method; (b): method by van Hinsberg et al. (2011).

MR equation are non-neglibigle. The parameter twin that defines the extent of contribution from the
window part was changed as twin/τη ≈ 0.1, 0.3, 0.5, 1, 3, 10 and 20. These values of twin correspond to
3, 10, 17, 33, 100, 333 and 667 time steps, respectively.

To describe quantitatively the extent of nonuniformity in particle distribution, here we introduced the
particle void fraction Pv (Yoshimoto and Goto, 2007). Pv represents the ratio of the computational
cells containing no particles. Figure 2 shows the time evolutions of Pv. When van Hinsberg’s method
was used to calculate the Basset force, the Pv profile was found to be totally independent of the
choice of twin (figure 2(b)). With the traditional window method, on the other hand, the results show
strong dependence on twin (figure 2(a)). The computational result using van Hinsberg’s method with
twin ≈ 20τη, i.e., a fully converged solution, was included in figure 2(a) for comparison. It can be seen
that the window method showed a non-monotonic convergence behavior with increase in twin and did
not reach the well-converged solution even with twin ≈ 20τη. It means that a caution is needed in
reliability of the results based on the window method. van Aartrijk and Clercx (2010) pointed out that
twin ≈ 2τη was enough to obtain a well-converged solution by the window method in stably stratified
turbulence. The present study showed stronger dependence on twin than the previous study.

Hereinafter the computational results by van Hinsberg’s method with twin ≈ 1τη will be treated as
“with Basset history force”.

4.2 Influence of Basset history force on preferential concentration of small particles and bubbles

Figure 3 shows the time evolutions of PV at various mass density ratio γ, from 0 up to 10000. Figure
4 presents instantaneous snapshots of spatial distribution of each type of particles. It is clearly shown
from both PV profiles and the spatial distributions of particles that, when the particle is very heavy
(i.e., γ ≥ 1000) or is almost neutrally buoyant (γ ≈ 1), the extent of preferential concentration of
particles is not affected by the Basset history force. Otherwise, the presence of the Basset history force
weakens the level of preferential concentration, especially under the conditions of γ ∼ 1.5−10 for heavy
particles and γ ≤ 0.7 for light particles.

Finally, the relation between the particle distribution and the coherent vortical structures was inves-
tigated. Figure 5 presents the spatial distribution of particles together with the profile of the second
invariant of the velocity-gradient tensor Q, for γ = 0 (ultimately light particle) and γ = 10000 (very
heavy particle). As has been explained in previous studies (e.g., Yoshimoto and Goto, 2007), heavy
particles tend to be swept out of intense eddies (where Q > 0, rotation-dominated regions) due to cen-
trifugal effects and accumulate along the outer peripheries of eddies. Light particles, on the other hand,
tend to accumulate inside eddies. This trend of spatial distribution of light particles was considerably
relaxed by the presence of the Basset history force.
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