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ABSTRACT 

Understanding flow characteristics in an open channel is crucial to assess velocity distribution and sediment 

transport patterns for bank protection. Numerical models are widely used to clarify the complex phenomena of 

flow structures and sediment transport in rivers after validation with reliable experimental datasets. However, 

the applications of a detailed three-dimensional (3D) model are still limited to small-scale phenomena, such as 

local scouring in an experimental channel because of long computational time, large memory requirements, and 

numerous computational tasks. Numerous depth-integrated models have been proposed to solve these problems. 

Numerical calculation validation was performed in this study by comparing a set of numerical models with a 

laboratory experiment conducted by De Vriend (1979). Numerical calculation method applied in this research 

is the bottom velocity computation (BVC) method, which evaluates bottom velocity distributions without 

computing the vertical distribution of velocity and pressure intensity, based on a depth-integrated method with 

horizontal vorticity equations. This paper presents the applicable ranges of a two-dimensional (2D) model and 

a quasi 3D model of a simplified bottom velocity computation (SBVC) model with shallow water assumption. 

A modified discretization for the dispersion term using the upwind scheme approach is introduced, and its merits 

over the previous scheme. The advantages of employing the SBVC method are demonstrated through a 

comparison with the 2D model. Measurement results indicate that the SBVC method can reproduce flow 

structures in a curved open channel. 
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1. INTRODUCTION 

Understanding flow characteristics in an open channel is crucial to assess velocity distribution and sediment 

transport patterns for bank protection. Numerical methods are widely used in modeling river hydrodynamics 

because of their cost effectiveness over experiments and field measurements. They are effective in clarifying 

the complex phenomena of flow structures and sediment transport after validation with reliable experimental 

datasets (Wormleaton, 2010). Understanding the mechanism of flow structures is useful for river engineers. 

Two-dimensional (2D) numerical methods have been used to simulate flows and temporal variations in bed 

topographies during floods. However, 2D numerical methods present limitations when defining complex 

phenomena, such as three-dimensional (3D) flows. Lane et al. (1999) compared the capabilities of 2D and 3D 

model approaches in calculating the flow process and sediment transport; their results showed that the 3D model 

demonstrated a higher predictive ability. Researchers have studied 3D models (Shukla and Shiono (2008); 

Morvan, et. al. (2002); Jing et. al. (2008)) and reported that they demonstrated good ability in simulating flow 

structures in meandering channels. However, the applications of 3D models are still limited to small-scale 

phenomena, such as local scouring in experimental channels because of their long computational time, large 

memory requirements, and numerous computational tasks. 

A number of depth-integrated models have been proposed to solve this problem. Uchida and Fukuoka (2016) 

developed a depth-integrated model, known as bottom velocity computation (BVC). The BVC method is an 

integrated multiscale simulation of flows and bed variations in rivers, which can evaluate vertical distributions 

of horizontal and bottom velocities by introducing depth-averaged horizontal vorticity and horizontal 
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momentum equations on a water surface to shallow water equations. The BVC method with shallow water 

assumption is known as simplified bottom velocity computation (SBVC). The objective of this study is to 

analyze the ability of the BVC method in calculating flow structures in a curved open channel by comparing it 

with experimental data. 

2. METHODS  

2.1 Experimental conditions 

The configuration of the physical model of the experiment conducted by De Vriend (1979) is shown in Fig. 1. 

Measured data of water surface elevation and velocity along the channel at the cross sections are available. The 

experiment conditions for the simulated flow are presented in Table. 1. 

The velocity data were measured in 21 cross-sections, including 13 sections in the curved part of the channel, 

which were equally spaced at 15° intervals from 0° to 180°. Six more sections in the downstream straight 

channel at 1 m intervals and two other sections were measured in the upstream straight segment; one was 1 m 

and the other was 4 m upstream of the first curved channel section. At each cross section, measurements were 

performed along 11 vertical lines; furthermore, each vertical line comprised nine measuring points. 

Table 1. Experiment condition for flow measurement. 

Bed slope So Discharge Q 

(m3/s) 

Depth (m) Width (m) Channel 

length (m) 

Inner radius r 

(m) 

Outer radius 

R (m) 

0.0 0.18 0.189 1.7 23.35 3.4 5.1 

2.2 Numerical model 

The BVC method was developed based on Eq. (3), which was derived by depth-integrating the horizontal 

vorticity with the shallow water assumption, in which the ratio of the representative water depth ℎ0  to 

representative horizontal scale 𝐿0 is small, i.e., 0 0 1

0 0

h W

s
L U

 =     (𝜀𝑠: shallowness parameter).  

 u u h
bi si ij j

= −  ,  (1) 

  
Figure 1. De Vriend (1979) experiment (a) curved open channel (b) messes of velocity measuring point 
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where 𝑢𝑏𝑖: bottom velocity, 𝑢𝑠𝑖: water surface velocity, Ω𝑗: depth-averaged vorticity, ℎ: water depth, 𝑤𝑠, 𝑤𝑏: 

vertical velocity on water surface and bottom, respectively, 𝑧𝑠: water surface level, and 𝑧𝑏: bottom level. The 

bottom velocity was evaluated by the water surface velocity and depth-averaged vorticity. To evaluate the 

bottom velocity shown in Eq. (1), the governing equations of the BVC method were composed of the depth-

integrated horizontal vorticity (Eq. (2)) and water surface velocity (Eq. (3)), in addition to the depth-integrated 

continuity equation (Eq. (4)) and depth-integrated horizontal momentum equation (Eq. (5)). 

 

j

hDh iji ER Pi it x


 


= + +

 
,  (2) 

where Ω𝑖 is the depth-averaged horizontal vorticity in the i direction, 𝐸𝑅𝜎𝑖  the rotation term of the vertical 

vorticity, 𝑃𝜔𝑖 the production term of vorticity from the bottom vortex layer, and 𝐷𝜔𝑖𝑗 the horizontal vorticity 

flux due to convection, rotation, dispersion, and turbulence diffusion. 

 
u u zsi si su g Psj sit x xj i

  
+ = − +

  
,  (3) 

where 𝑔 denotes gravity, and 𝑃𝑠𝑖the production term due to the shear stress acting on the thin water surface layer 

𝛿𝑧𝑠. 
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where 𝑈𝑖  is the depth-averaged horizontal velocity in the i direction, 𝜏𝑏𝑖  the bed shear stress, and 𝑇𝑖𝑗  the 

horizontal shear stress due to turbulence and vertical velocity distribution. The vertical distributions of the 

horizontal velocities are expressed by the cubic function (Eq. (6)) using the depth-averaged velocity 𝑈𝑖, velocity 

differences 𝛿𝑢𝑖 , ∆𝑢𝑖𝑗, and dimensionless depth 𝜂. 

 ( ) ( )3 2 3 2
12 12 1 4 3u u u Ui i i i    =  − + + − + + ,  (6) 

where, Δ𝑢𝑖: 𝑢𝑠𝑖 −𝑈𝑖  , 𝛿𝑢𝑖: 𝑢𝑠𝑖 − 𝑢𝑏𝑖 , 𝜂: (𝑧𝑠 − 𝑧𝑏)/ℎ. 

In this study, two numerical calculations were compared with the experiment by De Vriend (1979), as well as 

the 2D and SBVC models. 

2.3 Evaluation method of the dispersion term 

The effect of the dispersion term in a curved channel has been observed by Lien et al. (1999); they discovered 

that the dispersion term was an important term for describing secondary flow effects in curved-flow simulations. 

Dispersion changed abruptly near the entrance and exit of the bend, which was attributed to the transverse 

convection of the momentum. 

In numerical model, conservation of some quantities such as momentum transfer is a basic property and it is 

important that the discretization scheme preserves the same feature. The discretization scheme caused some 

numerical oscillations since it loses most of the stability properties of the continuous problem. Many numerical 

methods were applied for these problems, such as the finite difference method (FDM), finite element method 

(FEM), and finite volume method (FVM). The finite volume methods (FVM) have been widely used as effective 

discretization techniques for partial differential equations (Hermeline, 2000; Manzini and Russo, 2008). The 

FVM method combining with upwind scheme has overcome the numerical oscillation (Liang and Zhao, 1997). 

In the present method, one of the upwind schemes (CIP-CSL) was applied, whereas a centered scheme was 

applied in the dispersion term. The last term in Eq. (5) is the horizontal momentum transfer, which comprises a 

shear stress term due to molecular and turbulent motions and a dispersion term with vertical velocity 

distribution. 

 
' '

T u uij ij i j= + ,  (7) 

where 𝑢𝑖
′ = 𝑢𝑖 − 𝑈𝑖 . The dispersion term in Eq. (7) and the convection term in Eq. (5) are from the same 

convection term of the Reynolds-averaged Navier–Stokes equation before the depth-averaged integration.  

A discretization method with the dispersion term in Eq. (7) is proposed herein. Applying the first-order upwind 

scheme to momentum transfer 𝑢𝑖𝑢𝑗, the dispersion term 𝐷𝑖𝑗 is derived as follows: 
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 (8) 

Eq. (8) was added to evaluate the dispersion term of the last term in Eq. (7) for the momentum equation in the i 

direction. 

3. RESULTS AND DISCUSSION 

Fig. 2 shows a comparison of the water surface profile. Fig. 2(a) shows the result obtained by the experiment. 

The water surface profile was uniform in the section located before the curved part. Once the flow entered the 

curved part, the water level increased at the outer bank and decreased at the inner bank. The consideration of 

the secondary flow effect can decrease the slope of the super-elevation between the inner and outer banks. When 

the flow passed the curved part, the water surface profile became deeper at the outer wall and exhibited a skewed 

pattern. 

The results of the numerical calculations were validated against the experiment of de Vriend (1979). Figs. 2(b) 

and 2(c) show the results of the 2D and SBVC models, respectively; as shown, both models can reproduce the 

 
Figure 2. Water surface profile along the streamwise direction. (a) De Vriend (1979), (b) 2D, (c) SBVC, (d) 
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water surface profile from the experiment. The 2D model has a uniform water surface profile after leaving the 

curved part, and it cannot reproduce the skewed pattern after leaving the curved part. Meanwhile, the SBVC 

model can reproduce the skewed pattern after leaving the curved part; however, it cannot reproduce the lower 

depth of the water surface profile around the inner curved part.  

Fig. 2(d) shows the water surface profile of an updated SBVC. As shown, the treatment reproduced the water 
surface profile from the experiment satisfactorily. Along the inner curved part, it can reproduce the lower depth 
pattern. After leaving the curved part, it exhibits a skewed pattern, consistent with the experiment.  

Fig. 3 shows a comparison of the depth-averaged velocity along the streamwise direction. The behavior of 

secondary flows in a curved channel has been discussed by de Vriend (1979); before entering the curved part, 

the velocity exhibited a uniform pattern. Once the velocity entered the curved part, the velocity near the inner 

bank decreased gradually, whereas the velocity near the outer bank increased. After leaving the curved part, the 

outer bank became dominant owing to the large intensity of the secondary flow, which was the transverse 

convection of momentum transfer. 

Fig. 3(a) shows a comparison between the de Vriend (1979) and 2D models. The depth-averaged velocity pattern 

became uniform after leaving the curved part. This shows that apart from being unable to describe complex 

phenomena, the 2D model cannot produce the secondary flow effect in a depth-averaged velocity distribution. 

Fig. 3(b) shows the comparison between the de Vriend (1979) and SBVC models before adding the diffusion 

term. The calculation yielded a higher velocity along the outer wall than the experimental one; this was caused 

by the oscillation from the dispersion term. Meanwhile, SBVC_updated reproduced a depth-averaged velocity 

distribution that was similar to the experimental one, as shown in Fig. 3(c). 

 
Figure 3. Depth average velocity distribution along the streamwise direction. (a) De Vriend (1979) and 2D, (b) De 

Vriend (1979) and SBVC, (c) De Vriend (1979) and SBVC_updated 
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 Fig. 4 shows a comparison of secondary flow structures at cross section number 12. The SBVC method could 

reproduce secondary flow structures; the major secondary flow moved outward from the wall (moved from the 

inner wall to the outer wall). At the surface, the flow moved to the outer wall; at the bottom, the flow moved to 

the inner wall. However, the SBVC model could not reproduce velocity structures at the upper-outer and bottom-

outer walls. The experimental data indicated that the flow moved anticlockwise. In the SBVC model, the flow 

moved outward, which was one of the limitations of the SBVC model.  

4. CONCLUSION 

In general, the proposed model demonstrated satisfactory performance compared with the experimental data. 

Both the 2D and SBVC models produced a water surface profile and a depth-averaged velocity distribution. 

Meanwhile, only the SBVC model could describe secondary flow structures. A modified discretization for the 

dispersion term using the upwind scheme approach was introduced, and its merits over the previous scheme 

were presented. The results indicated that the scheme produced less numerical diffusion and dispersion than the 

centered scheme. 
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