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ABSTRACT 

Internal solitary waves (ISWs) ubiquitously exist in oceans and they also frequently occur in density stratified 
lakes. Numerous laboratory-scale physical experiments and numerical simulations have been carried out to 
explore the shoaling dynamics of ISWs on slope topographies. Detailed features during wave breaking have 
been investigated under relatively low Reynolds numbers, but for real ocean-scale or lake-scale scenarios with 
a much higher Reynolds number, laboratory-scale modeling is inadequate to capture the three-dimensional 
turbulent characteristics in the wave shoaling process. As a result, the Reynolds number effects during the 
shoaling process of ISWs traveling on uniform slopes are investigated by 3D numerical simulations. Scale 
effects due to different Reynolds numbers and three-dimensional characteristics during wave shoaling are 
explored and discussed. It is found that the maximum wave-induced velocities and energy loss are well related 
to Iribarren numbers and the extreme velocities, wave energy loss, and three-dimensionality of the flow field 
are all identified to be very sensitive to Reynolds numbers, indicating that traditional two-dimensional 
laboratory-scale modeling tools may be insufficient to accurately capture the shoaling mechanisms of ISWs. 
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1. INTRODUCTION 

Internal solitary waves (ISWs) widely exist in oceans (Moum et al., 2007; Duda et al., 2004) where they are 
usually generated from tide-topography interaction. Nonlinear ISWs are also ubiquitous in seasonal stratified 
lakes and wind force are usually the primary driven forces (Sakai and Redekopp, 2010). Even in relatively 
small lakes, internal waves re-occur frequently and can have potential ecological consequences for 
metalimnetic phytoplankton populations (Pannard et al., 2011). Shoaling ISWs and the corresponding 
breaking mechanisms have great impact on the mixing in the interior of oceans and lakes, on sediment re-
suspension and nutrients transport. Intensive in-situ observations of nonlinear internal waves on the 
Portuguese shelf showed that internal waves provided an important source of vertical mixing (Jeans and 
Sherwin, 2001). Numerous laboratory experiments have been carried out to study the shoaling process of 
ISWs. Helfrich (1992) observed the shoaling of a single ISW can break and produce multiple turbulent surges, 
resulting in significant vertical mixing occurring everywhere inshore of the breaking location. The shoaling 
and breaking of an internal solitary wave of depression on a uniform slope were studied experimentally by 
Michallet and Ivey (1999). They pointed out that even if the mixing efficiency was low for a particular ISW 
shoaling process, the regular nature of the breaking event was important for the mixing and transport of 
benthic materials over long periods of time. Internal solitary wave evolution was performed on steep and 
inverse uniform slopes by Chen et al. (2007) and a mirror-image model was hypothesized to describe the 
physical features of shoaling waves. As evidently pointed out by Guo and Chen (2014), the ISWs of 
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depression type can convert into the elevation counterparts while traveling toward continental slopes/shelves. 
This evidence strongly indicates that more frequent occurrences of the shoaling process for the ISWs of 
elevation type can be expected in nature. For instance, the depression-typed ISWs in the northeastern South 
China Sea were observed to transform into the elevation counterparts over the seafloor of about 100 ~ 200 m 
deep (Bai et al. 2017).  

As obviously shown by Aghsaee et al. (2010), collapsing or collapsing-plunging breakers during the shoaling 
process for the depression-typed ISWs do convert into plunging breakers for higher Reynolds number cases. It 
would be interesting to study the Reynolds number effects for the interaction between the elevation-typed 
ISWs and uniform slopes under a three-dimensional frame. The main purpose of the present study is thus to 
investigate the highly unsteady turbulent process and the scale effects during ISW-slope interaction based on 
three-dimensional large eddy simulation (LES).  

2. NUMERICLA MODELS 

2.1 Governing equations 

A three-dimensional LES has been employed in the present study to explore the detailed dynamics of ISW-
slope interaction. The physical process is governed by the filtered continuity and Navier-Stokes equations, 
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where iu  is the filtered velocity component, ix  is the Cartesian coordinate,    is the density of the fluid,  p  is 
the pressure,  ν is the kinematic viscosity and if  is the body force modelling the gravitational acceleration in 
the vertical direction. The Einstein summation convention and notation are used here. In addition, νt is the 
eddy viscosity which can be modeled by the classic Smagorinsky subgrid-scale stress model: 
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where Cs is the Smagorinsky constant, set to be 0.1 in the present study. Δ is the filtered length and Sij is the 
rate of strain tensor identifying the symmetric part of the velocity gradient tensor. One of the factors that 
drives the ISWs’ propagation is the density difference inside the fluid, and thus mass transfer between the 
two-layer water system is taken into account. The scalar transport equation that governs the advection-
diffusion effect is as follows: 
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where c is the volume concentration of saline water in the fluid, k is the molecular diffusivity coefficient of the 
solute and kt is the eddy diffusivity coefficient. The relationship between kt and νt can be linked with a 
turbulent Schmitt number Sct, kt = νt/Sct with Sct = 1.0 in the present work. 

2.2 Numerical methods 

An in-house code called CgLES (Complex Geometry Large-eddy Simulation) originally developed by 
Thomas and Williams (1995) was applied here. Adams-Bashforth scheme of second order accuracy is used in 
time marching and a second order central difference scheme is used in space for the momentum equation 
discretization. The pressure Poisson equation is solved by a preconditioned pressure conjugated gradient 
method. Once the correct velocity field is obtained, the scalar transport equation is then solved. In time a 
conservative explicit second order Runge-Kutta scheme is used to discretize the advection-diffusion equation. 
The advection term itself is discretized by a second order upwind difference scheme while the diffusion term 
is discretized using second order central differences. The superbee flux limiter is used in the upwind scheme 
to ensure the solutions are total variation diminishing (TVD). 

2.3 Model validation 

The present numerical model CgLES has been successfully applied in the simulation of turbulent channel 
flows (Thomas and Williams 1995), interactions between ISWs and submerged ridges (Zhu et al. 2016). The 
detailed model validation can be found in the paper of Zhu et al. 2017, in which breaking of depression-typed 
ISWs on slopes was investigated.  

3. SIMULATION SETUP AND COMPUTATIONAL CASES 

3.1 Simulation setup 
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A three-dimensional computational domain is constructed to investigate the interaction between the elevation-
typed ISWs and the uniform slopes. As is shown in Figure 1, the numerical wave tank has a dimension of 
1500 m × 100 m × 50 m (L × H × W) in the horizontal (X), vertical (Y) and span-wise (Z) directions, 
respectively with the origin (X, Y) = (0, 0) m being located at the left bottom corner of the tank. The 
computational domain is stratified in two layers with a thin pycnocline in the middle. The two-layer fluid 
system consists of the upper-layer and lower-layer thicknesses of h1 = 87.5 m and h2 = 12.5 m with densities of 
ρ1 = 1000 kg/m3 and ρ2 = 1030 kg/m3, respectively. In the present work, the initial background stratification is 
configured as a smooth tanh profile in the vertical direction. 

 
Figure 1. Schematic view of the numerical wave tank. The incident ISW propagates from left to right with the initial crest 

center located at Xint = 400 m. 

3.2 Computational cases 

As listed in Table 1, a total of 12 cases have been carried out to study the dynamics of elevation-typed ISWs 
shoaling on uniform slopes with different angles, θ, or slopes, s. The internal Iribarren number (Ir) in the table 
is defined as the ratio of the topographic slope s, and the square root of the incident wave steepness sw. The 
initial wave amplitudes a0 are set to be 12.5 m for all the cases. To explore the Reynolds number effects for 
the ISW-slope interaction, the order of magnitude of the wave Reynolds number Rew is set to be about 103, 104 
and 105 for case groups A, B and C respectively, through adjusting the kinematic viscosity ν. Simulations are 
initialized according to the exact solitary wave solutions of the eKdV equation. For the case groups A with 
relatively lower Rew, a mesh of 768 × 128 × 24 is used. For the cases B with medium Rew and C with high Rew, 
the grid resolutions are determined to be 1024 × 192 × 36 and 1536 × 256 × 48, respectively, after grid 
independent tests. Parallel computing was applied for all the computational cases with about 20, 60 and 500 
CPU hours being consumed for case groups A, B and C respectively. 

Table 1. Computational cases and related parameters 

   Topographic slopes 

   
θ= 5° 

 s = 0.087 
θ= 10° 
s = 0.176 

θ= 15° 
s = 0.268 

θ= 20° 
s = 0.364 

Case 
Group 

a0 

(m) 
Rew 

(awcw/ν) 
Run No./Bolus formation/Ir  

A 12.5 O(103) 1/Y/0.197 2/Y/0.409 3/Y/0.631 4/N/0.867 
B 12.5 O(104) 1/Y/0.196 2/Y/0.403 3/Y/0.617 4/N/0.842 
C 12.5 O(105) 1/Y/0.195 2/Y/0.400 3/Y/0.613 4/N/0.838 

 

4. RESULTS AND DISCUSSION  

4.1 Dynamics of internal boluses 

For case A1, a typical well-organized internal bolus develops during the upslope-surging process, as 
illustrated in Figure 2 in which T* is the non-dimensional time (= t*cw/h2) and T* = 0 (or t* = 0 s) is 
designated to be the moment when the crest of the incident ISW is exactly passing the toe of the uniform slope. 
It is meaningful to explore the formation process and propagation properties of the boluses because the 
formation of the internal boluses surging upslope during ISW-slope interaction can transport denser lower-
layer fluid onshore, thus enhancing local mixing and dissipation. The bolus first emerges at T* = 14.59 in the 
wave front characterized with an abrupt thicker blob of denser water having a maximum vertical excursion of 
db [see Figure 2(a)]. The foremost point also called the nose of the bolus [as marked in Figure 2(a)] is slightly 
above the slope with a height of hb. Due to its larger mass inertial, the bolus tends to propagate faster than the 
ambient heavier fluid and gradually separates from the wave front at T* = 18.24 [Figure 2(b)]. The main body 
of the incident ISW reflects from the slope but the bolus continues running up the slope [see Figure 2(c-f)]. 
The solid lines surrounding the bolus represent the density ISO-surface of (ρ1 + ρ2)/2. As clearly observed, the 
bolus shrinks its size gradually with time since the interior denser fluid continuously leaks out from the rear of 
the bolus. At T* = 38.3, denser fluid above the average density (1015 kg/m3) only concentrates in the core of 
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the bolus [Figure 2(e)]; and subsequently at T* = 43.78, the maximum density inside the bolus is well below 
1015 kg/m3 [Figure 2(f)].  

 
(a) T* = 14.59                                            (b) T* = 18.24                                       (c) T* = 25.54   

  

   (d) T* = 34.66                                           (e) T* = 38.30                                       (f) T* = 43.78 

Figure 2. Temporal and spatial variations of the internal bolus during ISW-slope interaction for case A1. Black solid 
curves correspond to the ISO-density line of (ρ1+ρ2)/2. 

The average velocity of the upslope-surging bolus, Ub, is calculated based on the distance through which the 
nose can travel during the time interval from the incipient occurrence of a well-developed bolus to the instant 
that the nose reaches the maximum height. Herein, Ub is normalized by the incident wave phase speed cw, thus 
leading to the so-called bolus Froude number, Frb (= Ub/cw). It is interesting to note that Frb is closely related 
with Ir. Lower values of Ir represent the ISWs shoaling on milder slopes, larger-scale boluses with relatively 
huge kinetic energy would form and thus result in higher Frb. On the contrary, for the cases with higher values 
of Ir on steeper slopes, this situation reverses as evidently shown in Figure 3. For all the simulation cases in 
the present study, the maximum of Frb is 0.6 while the minimum is halved to be 0.3. The relationship between 
Frb and Ir is fitted by the following regressed curve, 

-0.590.2 b rFr I                                                                                               (5) 

It should be noted that the corresponding relationship for medium and high Rew case groups (marked by solid 
squares for cases B with Rew ~ 104 and triangles for cases C with Rew ~ 105) in Figure 3 also follow the same 
tendency with the fitted curve. 

 
Figure 3. The relationship between Frb and Ir. The dashed line is fitted by the results from low Rew case groups A, B and 

C with occurrence of the boluses. The vertical error bar is 15%. 

 
4.2 Reynolds number effects 

4.2.1 Maximum vertical displacement 

Figure 4 shows the non-dimensional maximum vertical displacement dmax/aw for ISWs shoaling on slopes with 
the vertical error bars of 2.5%. It means that the differences for dmax/aw are less than 2.5% for all the cases with 
Rew ranging two orders of magnitude higher, revealing nearly without Rew effect on the distribution of dmax/aw.  
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Figure 4. Non-dimensional maximum vertical displacement dmax/aw versus Ir under differentReynolds numbers Rew. The 

vertical error bar is 2.5%. 

 

4.2.2 Maximum wave-induced velocities 

However, the non-dimensional maximum wave-induced velocities (with U* = umax/cw and V* = vmax/cw) are 
more sensitive to Rew because higher Rew generally implies more prominent inertia and relatively larger flow 
velocities. As seen in the lower part of Figure 5(a), the non-dimensional maximum offshore velocities U*

- 
does increase about 20% if Rew becomes one order of magnitude higher. On the other hand, for the non-
dimensional maximum onshore velocities U*

+, although higher Rew corresponds to higher velocity magnitudes, 
the velocity increment is about 20% if Rew is varied from 103 to 105 [see the upper part in Figure 5(a)]. It is 
also found that V*

+ and U*
- are more sensitive to Rew for lower and higher values of Ir, respectively. In 

addition, the non-dimensional maximum vertical velocities U*
+ and U*

- have significant increase if Rew is 
increased two orders of magnitude higher for higher Ir cases [see Figure 5(b)]. 

The above characteristics of the extreme velocity under different Rew are found to be related with their spatial 
distribution. Detailed statistics shows that the locations at which the maximum non-dimensional velocity U* 

and V* occur can either be in the bolus, in the upslope surging process prior to bolus formation or in the 
boundary jet during the ISW run-down process (marked with green, red and blue in Figure 5 respectively). 
The positions where the maximum horizontal velocity U* emerges show less independency of Rew numbers. 
The maximum horizontal onshore velocities U*

+ always occur during the upslope surging process while the 
occurrence of its offshore counterpart U*

- is always in the boundary jet during the flowing down process [in 
Figure 5(a)]. On the other hand, the locations with the maximum vertical velocity V* are closely linked with 
Rew numbers, especially for higher Ir cases [in Figure 5(b)]. For lower Ir (~ 0.2), the maximum vertical 
velocity V* tends to occur inside the bolus for Rew ranges from 103 to 105. However, for Ir ~ 0.4, the maximum 
upward vertical velocity V*

+ is found inside the bolus for Rew = 103 ~ 104, but is induced by the boundary jet 
for Rew ~ 105. For even higher Ir cases without bolus formation, the location of V*

+ is in the upslope surge 
under low and medium Rew, but can be shifted to the boundary jet under higher Rew. The location of V*

- is 
limited in the boundary jet, reflecting the characteristic of Rew number independency. 

    

Figure 5. Extreme velocities during the ISW-slope interaction under different Reynolds numbers. Note that different 
colors correspond to different locations where the peak velocity occurs. The vertical error bar is 20%. 

 

4.2.3 Wave energy loss 

During the ISW run-up process, including the upslope surge and the afterwards bolus evolution, a majority 
part of kinetic energy (KE) of the incident ISW gradually converts into available potential energy (APE). 
Taking case A4 during the ISW run-up phase as an example, due to the transformation into APE and 
dissipation, as high as around 90% of the KE can be reduced, indicating a suppressed or restrained Rew 
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number effect. As a result, peak velocities inside the bolus or in the upslope surge (marked in green and red 
respectively in Figure 5) are generally insensitive to Rew numbers compared with their counterparts in the 
boundary jet. On the contrary, when APE converts into KE during the ISW run-down phase, inertial force 
dominates again due to the conversion of APE to KE, and thus peak velocities inside the boundary jet are 
closely influenced by Rew.   

The non-dimensional energy loss δE during the ISW shoaling process is also sensitive to Rew. Higher Rew 
indicates smaller viscous effect and relatively less energy loss, as shown in Figure 6. Especially for cases with 
Ir > 0.5, the energy loss can decrease more than 20% if Rew increases from 103 to 104. 

 

Figure 6. Non-dimensional energy loss for the ISW-slope interaction under different Reynolds numbers. The vertical 
error bar is 20% 

4.2.4 Three-dimensional effect 

To explore the 3D coherent vortex structure inside the internal boluses, Q-criterion is employed for vortex 
identification and visualization. Figure 7(b-d) shows the instantaneous snapshots of the 3D vortex structures, 
extracted from the flow field when the maximum fluctuating velocity w’ occurs for case A1, B1 and C1, 
respectively. The gray ISO-surface corresponds to Q = 0.002 s-1 and the blue region is identified as the vortex 
core inside the bolus with a much higher value (Q = 0.02 s-1). For the ISW-slope interaction with the internal 
boluses, the flow field evolves from 2D to 3D due to the secondary instability. Figure 7 (a, b) shows the 
vortex structure with the transition process of vortex tubes from 2D to 3D for case AL1 with a lower Rew at T* 
= 25.54 and 34.66, respectively [also see Fig. 2(c, d)]. More irregular smaller-scale vortices can be observed 
for cases with medium and higher Rew [see Figure 7 (c, d)]. Consequently, the 3D effect during the elevation-
typed ISW shoaling on the slopes cannot be neglected even in laboratory-scale scenarios and 2D numerical 
simulations may be insufficient to capture the important 3D structures especially for the cases with bolus 
formation. 

             
(a) Case A1 at T* = 25.54                                 (b) Case A1 at T* = 34.66 

                 

(c) Case B1 at T* = 30.15                                      (d) Case C1 at T* = 25.65 

Figure 7.  Instantaneous snapshots of 3D vortex structures within the internal bolus are plotted as the iso-surfaces of Q 
for cases A1, B1 and C1 while the instantaneous fluctuating velocity w’ reaches the maximum. The gray and blue iso-

surfaces correspond to Q = 0.002s-1 and Q = 0.02s-1, respectively. 
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5. CONCLUSIONS 

A highly resolved three dimensional large-eddy simulation (LES) has been carried out in the present work to 
investigate the less studied dynamics of the ISWs of elevation type shoaling on uniform slopes in a two-layer 
fluid system. A total number of 12 cases have been performed from laboratory-scale simulations with 
relatively low Reynolds numbers to the scenarios in which the Reynolds numbers are increased two orders of 
magnitude higher. Major conclusions of the present study can be drawn as follows: 

 (1) A well-organized internal bolus develops during the ISW shoaling process. The bolus Froude number is 
closely related with Iribarren number. Lower values of Iribarren number can result in a higher bolus Froude 
number. 

(2) The maximum vertical displacement of the denser fluid and the propagation speed of the boluses is 
insensitive to the increase of Reynolds numbers. However, increasing the Reynolds numbers two orders of 
magnitudes higher can significantly increase the maximum wave-induced velocities and decrease the total 
wave energy loss during the shoaling process. 

(3) The transition process of the flow field from 2D to 3D can be excited much faster during ISW-slope 
interaction for the cases with higher Reynolds numbers. Even for laboratory-scale simulations, 3D impact 
does exist although it may be relatively weak. Special caution should be paid to the situation if 2D models are 
employed for cases with bolus formation. Due to the significant Reynolds number effects during ISW-slope 
interaction, results from laboratory scale experiments and numerical simulations may not be suitable when 
extended to field scale applications. 
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