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ABSTRACT 

In order to investigate characteristics of open-channel flow under wind-driven shear stress on the water surface, we carry 

out numerical simulations by using the direct numerical simulation, i.e., DNS, and RANS with the standard 𝑘‐ ε model.  

The vertical distributions of the streamwise velocity and the Reynolds stress vary depending on the sign and magnitude of 

the surface shear stress.   The numerical results from DNS demonstrate that under the condition of negative shear stress, 

the streamwise velocity around the half-water depth is increased than that in the case of no shear stress.   The surface 

divergence calculated from DNS is confirmed to be universally scaled with the Taylor microscale regardless of the positive 

or negative sign of the shear stress.  Though the volume flow rate doesn’t change regardless of the variation of the surface 

shear stress, the scalar flux at the water surface is found to be decreased in the case of negative shear stress.  This suggests 

that the direction of wind-driven shear stress relative to the main flow becomes important for the scalar transport.  In 

addition, the cross-correlation coefficients between the scalar flux and physical quantities such as the surface divergence 

and the vorticities close to the water surface are investigated to identify turbulent vortex structure controlling the air-water 

scalar transport.   It has been concluded that the scalar flux increases considerably when the vortex structure is arranged so 

as to induce a strong upward flow toward the water surface. 
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1. INTRODUCTION 

Several studies on characteristics of turbulent fields affected by wind-driven shear stress on the water surface 

have been made primarily for wind-wave turbulence without background flow (e.g., Matsunaga and Uzaki 

(2002)).  However, a relatively strong wind blows frequently above the surface of river, having the mean flow.  

Open channel flow, which can be recognized as a physical model of river flow turbulence, is most basic and 

highly applicable in the field of hydraulic engineering, and much research has been accumulated on its turbulent 

field (see Tominaga (2010)).  Therefore, it is of interest to investigate how the turbulent structure of open-

channel flow varies when wind-driven shear stress acts on the water surface. 

The response of turbulent fields to wind stress has been mainly studied experimentally until now.  Nezu et al. 

(2004) investigated the relationship between turbulence and water surface fluctuation in the case where wind 

stress acts on the water surface in open channel flow.  They tried to classify the experimental data based on the 

ratio of the air side shear stress on the water surface to the bottom shear stress.  Such an indicator is considered 

to be important in defining and interpreting the physical phenomena in this problem.   Furthermore, Sanjou and 

Nezu (2011) examined the change of turbulent flow according to the wave development by blowing air above 

the water surface in a laboratory wind-water tunnel tank.  Though several experimental approaches have been 

attempted so far, but there are no clear findings or conclusions about the response of open channel turbulence 

to wind-driven shear stress.  This problem may be also redefined as an examination of the effect of wind stress 

on mass transport in river flow. 

In this study, we investigate the effect of the surface shear stress on open-channel flow turbulence through 

numerical simulations.  In particular, we aim at clear findings about the characteristics of the turbulent flow 
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affected by the surface shear stress; thus we simplify the analytical object as much as possible.  The numerical 

models used in this study are the direct numerical simulation (DNS) and the RANS simulation with the standard 

𝑘‐ 휀 model, which is one of the simplest RANS models.   Furthermore, we confirm how a scaling relation for 

the divergence of horizontal velocities on the water surface, i.e., the surface divergence, proposed in previous 

studies (see Tsumori and Sugihara (2007) and Sanjou et al. (2015)), depends on the surface shear stress, and 

investigate the dependence of scalar transport at the water surface on the surface shear stress.  Finally, we discuss 

the cross-correlation coefficients between the surface scalar flux and the turbulence characteristics close to the 

water surface to identify turbulent motions controlling the air-water scalar transport. 

2. OUTLINE OF NUMERICAL SIMULATIONS 

Let us consider the case where shear stress acts on the water surface 𝜌𝑢𝜏𝑠
2  (hereinafter referred to as surface 

shear stress) in an open channel with the bottom slope sin and water depth h.  Here,  is the density of water 

and 𝑢𝜏𝑠 is the water side friction velocity, corresponding to the surface shear stress.   For such a uniform flow, 

the gravitational and the surface shear forces are balanced with the bottom shear force, so that the following 

relationship holds 
𝜌𝑔ℎ 𝑠𝑖𝑛 𝜃

𝜌𝑢𝜏𝑏
2 = 1 − 𝜏𝑠

∗ , (1) 

where 𝜏𝑠
∗ is defined as 

𝜏𝑠
∗ ≡

𝜌𝑢𝜏𝑠
2

𝜌𝑢𝜏𝑏
2  . (2) 

Here, 𝜏𝑠
∗ is the dimensionless surface shear stress, indicating the ratio of the surface shear stress to the bottom 

shear stress 𝜌𝑢𝜏𝑏
2 .  It should be noted that 𝜏𝑠

∗ < 1 holds in the case where there exists the background channel 

flow.   Therefore, we can investigate the response characteristics of open-channel turbulence to the surface 

shear stress by systematically changing the value of 𝜏𝑠
∗.  In this study, we set 𝜏𝑠

∗ = 0.0, ±0.1, ±0.2, ±0.3, for 

which only the shear stress parallel to the direction of main flow acts on the water surface. 
 

2.1 Direct numerical simulation (DNS)  

For performing DNS, the space coordinates 𝑥𝑖 , time t, flow velocities 𝑢𝑖 , and pressure 𝑝  are non-

dimensionalized by using  𝑢𝜏𝑏 and water depth h.  The basic equations consist of the continuity equation for 

incompressible fluid, the Navier-Stokes equation and the advection-diffusion equation for a passive scalar as 

follows: 
𝜕𝑢𝑖

∗

𝜕𝑥𝑖
∗ = 0

𝜕𝑢𝑖
∗

𝜕𝑡∗
+ 𝑢𝑗

∗
𝜕𝑢𝑖

∗

𝜕𝑥𝑗
∗ = −

𝜕𝑝∗

𝜕𝑥𝑖
∗ +

1

𝑅𝑒𝜏
(
𝜕2𝑢𝑖

∗

𝜕𝑥𝑗
∗𝑥𝑗

∗) +
𝛿1𝑖
𝐹𝑟𝜏

2

𝜕𝑐∗

𝜕𝑡∗
+ 𝑢𝑗

∗
𝜕𝑐∗

𝜕𝑥𝑗
∗ =

1

𝑆𝑐𝑅𝑒𝜏

𝜕2𝑐∗

𝜕𝑥𝑗
∗𝜕𝑥𝑗

∗  ,                    

 

}
 
 
 

 
 
 

 (3) 

where the subscript ∗ denotes the dimensionless quantity, and parameters 𝐹𝑟𝜏, 𝑅𝑒𝜏 and Sc are defined as 

1

𝐹𝑟𝜏
2
≡
𝑔ℎ 𝑠𝑖𝑛 𝜃

𝑢𝜏𝑏
2 = 1 − 𝜏𝑠

∗,   𝑅𝑒𝜏 ≡
𝑢𝜏𝑏ℎ

𝜈
,   𝑆𝑐 ≡

𝜈

𝐷
 . (4) 

The parameters and boundary conditions in the numerical simulation using DNS are summarized in Table 1 

(see Sugihara et al. (2011)).  The boundary conditions for the flow velocities on the water surface are given by 

1

𝑅𝑒𝜏

𝜕𝑢1
∗

𝜕𝑥2
∗ = 𝜏𝑠

∗,    𝑢2
∗ = 0,   

𝜕𝑢3
∗

𝜕𝑥2
∗ = 0 . (5) 

Here, the coordinate system is a three-dimensional rectangular one, defining 𝑥1
∗ as the streamwise direction, 𝑥2

∗ 

the vertical direction taken upward from the bottom, and  𝑥3
∗ the spanwise direction.  In addition, the periodic 

boundary conditions are imposed on the side boundaries, and the no-slip condition is imposed on the bottom 

surface.   The analysis is performed under the condition of no surface fluctuation in the vertical direction, so 

that the vertical displacement of the water surface is not considered and this assumption may influence the 

anisotropy of near-surface turbulence.  Also, the surface shear stress is kept to be constant on the water surface 

in this study.  Note that the averaged value of the shear stress on the bottom surface is given by 𝜌𝑢𝜏𝑏
2 , but its 

local value varies spatiotemporally on the bottom surface.  After the next sections, for convenience, each 

quantity is represented as follows: 
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𝑥1
∗ ≡ 𝑥∗,    𝑥2

∗ ≡ 𝑦∗,   𝑥3
∗ ≡ 𝑧∗

𝑢1
∗ ≡ 𝑢∗,   𝑢2

∗ ≡ 𝑣∗,   𝑢3
∗ ≡ 𝑤∗ .

} (6) 

Table 1. Calculation method and conditions for DNS 

Numerical algorithm Simplified MAC method 

Differential approximation 4𝑡ℎ-order central-differences, Lagrange’s  interpolation 

Time evolution 
(1𝑠𝑡 𝑠𝑡𝑒𝑝) Explicit Euler method 

(2𝑛𝑑 𝑠𝑡𝑒𝑝) 2𝑛𝑑- order Adams-Bashforth method 

Size of comp. domain Streamwise 𝑥∗ : 7.68, Spanwise 𝑧∗ : 3.84, Vertical 𝑦∗ :1.0 

Number of comp. grids 𝑅𝑒𝜏 = 150: (Nx, Ny, Nz) = (128, 129, 128) 

Grid spacing 𝑅𝑒𝜏 = 150: (∆𝑥∗,∆𝑦∗,∆𝑧∗)=(0.06,7.4 × 10−4~1.5 × 10−2,0.03) 

Time difference, Total times ∆𝑡∗ =5.0× 10−5,  𝑡∗ = 15  

Non-dimensional Parameters 𝑅𝑒𝜏 = 150 ,  𝑆𝑐 = 1.0,   1 𝐹𝑟τ
2⁄ = 1‐ 𝜏𝑠

∗,   𝜏𝑠
∗ =-0.3,-0.2,-0.1,0,0.1,0.2,0.3 

Boundary conditions 

𝑥∗,  𝑧∗ axis boundaries 𝑦∗ axis boundary 

u*, v*, w*, p*: Periodic 
u*, w* at y*=0: Dirichlet and at y*=1: Neumann 

v*: Dirichlet,  p*: Neumann 

2.2 RANS simulation using the standard 𝑘‐ 휀 model 

The outline of the simulation using the standard k- model (see Nakayama and Yokojima (1999)), which is the 

most representative RANS model, is described here, but we leave out their basic equations because of space 

limitations of paper.   For the simulation with the k- model, the non-dimensional quantities are defined as 

𝑦 ≡ ℎ𝜂,   𝑡 ≡
ℎ

𝑈𝛿
�̃�,   𝑈 ≡ 𝑈𝛿𝑈,   𝑘 ≡ 𝑘𝛿�̃�,   휀 ≡ 휀𝛿휀̃ , (7) 

where U is the averaged streamwise velocity, k the turbulent kinetic energy, 휀 the energy dissipation rate, and ˜ 

denotes the dimensionless quantity.  𝑈𝛿 , 𝑘𝛿 and 𝛿 are also defined as follows: 

𝑈𝛿 ≡ 𝑢𝜏𝑏 [
1

𝜅
𝑙𝑛 (𝑅𝑒𝜏 (

𝛿

ℎ
)) + 𝐴𝑟]

𝑘𝛿 ≡
𝑢𝜏𝑏
2

√𝐶𝜇
, 휀𝛿 ≡

𝑢𝜏𝑏
3

𝜅𝛿
 ,

}
 
 

 
 

 (8) 

where   (= 0.41) is the Karman constant and 𝐴𝑟 a constant to be 5.3 for the smooth surface.   The closure model 

constants are given by 𝜎𝑘 = 1.0 , 𝜎 = 1.3 , 𝐶1 = 1.44 , 𝐶2 = 1.92  and 𝐶𝑢 = 0.09 .   Also, δ⁄h is the wall 

boundary layer thickness depending on 𝑅𝑒𝜏, and we give 0.08 for 𝑅𝑒𝜏 = 150 on the basis of comparison with 

the DNS results.  In this numerical experiment, the standard k- model is used, and only the upper layer above 

δ⁄h where the effect of the low Reynolds number effect due to the wall can be ignored is calculated.   Since the 

low Reynolds number effect by the presence of the wall surface is ignored in the standard k- model, we simulate 

the turbulent structure in only upper layer from  = δ⁄h.   The eddy viscosity and the damping function of 

turbulence in the vicinity of the water surface 𝑓𝑠 become 

𝜈𝑡 = 𝐶𝜇𝑓𝑆(𝜂)
�̃�2

휀̃

𝑓𝑆(𝜂) ≡ 1 − exp(−𝐴𝑠
ℎ휀𝑠

𝑘𝑠
3/2

(1 − 𝜂))

           = 1 − exp(−𝐵𝑠(1 − 𝜂)) , }
  
 

  
 

 (9) 

where 𝑘𝑠  and 휀𝑠  included in the damping function represent the turbulent kinetic energy and the energy 

dissipation rate at the water surface, respectively.   In this study, when 𝐵𝑠 > 18 or 𝐵𝑠 < 18, the variation of the 

vertical distribution of turbulence near the water surface became steeper or gentler than that of DNS.  Therefore, 

we adopt 𝐵𝑠 = 18 as a result of tuning, but the validity of this value should be examined in a future study.  The 

grid width used for the numerical calculation is 0.005, and the boundary conditions are given as follows: 

                         𝑈 = 1,    �̃� = 1,    휀̃ = 1   at   𝜂 =
𝛿

ℎ

(𝜈𝑡 +
1

𝑅𝑒𝜏

𝐶𝜇

𝜅

ℎ

𝛿
)
𝜕𝑈

𝜕𝜂
= (

𝐶𝜇

𝜅

ℎ

𝛿

𝑢𝜏𝑏
𝑈𝛿
) 𝜏𝑠

∗ ,   
𝜕�̃�

𝜕𝜂
= 0,    휀̃ =

(
𝛿
ℎ
)

(
𝑦′

ℎ
)

�̃�
3
2  at  𝜂 = 1  

}
  
 

  
 

 (10) 
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with y’⁄h being a certain turbulence scale close to the water surface, for which we adopt a recommended value 

of 0.07 by Nakayama and Yokojima (1999).   In this study, the condition for the surface shear stress in Eq. (10) 

is given by using the form of the central difference at a grid point below the one mesh from the water surface, 

and we set the streamwise velocity at the surface to satisfy these relationships. 

3. RESULTS AND DISCUSSION 

Figure 1 shows the response of the averaged streamwise velocity distributions to 𝜏𝑠
∗ obtained from DNS under 

the condition of 𝑅𝑒𝜏 = 150.   This figure demonstrates that the positive or negative vertical shear of the velocity 

is formed near the water surface according to the sign and magnitude of the surface shear stress.   In addition, 

in the case of the positive surface shear stress, it can be seen that the inflection point appears in the velocity 

distribution.   The most interesting point is that when a negative shear stress is applied, the streamwise velocity 

around the half-water depth is obviously increased compared to that in the case of no shear stress.   However, 

this tendency cannot be reproduced by the standard 𝑘‐ 휀 model for turbulence at high Reynolds numbers.  The 

feature has been also confirmed from experimental results provided by Nezu et al. (2005).  The physical 

mechanism has not been elucidated yet though this phenomenon is of very interest from a viewpoint of 

hydrodynamics.  The response in the results from the 𝑘‐ 휀 model becomes smaller than that from DNS near the 

water surface, even though the surface shear stress takes the same value.  This suggests that there is an 

unexplained mechanism to be considered in the vicinity of the water surface.   Figure 2 shows the vertical 

distributions of the Reynolds stress obtained from the numerical results using by DNS.   It is clear that they 

change linearly except for the regions near the bottom and the water surface according to the sign and magnitude 

of the surface shear stress. 

The divergence of the horizontal velocities on the water surface, i.e., the surface divergence, is considered to be 

a significant parameter for scalar transport at the water surface.   The surface divergence 𝛽∗ is defined by 

𝛽∗(𝑥∗, 𝑧∗, 𝑡) = (
𝜕𝑢∗

𝜕𝑥∗
+
𝜕𝑤∗

𝜕𝑧∗
)|
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

 , (11) 

where 𝑢∗and 𝑤∗represent the velocities in the 𝑥∗and 𝑧∗directions, respectively.  

   
   (a)  DNS                                                                            (b)  k- model 

Figure 1. Response of averaged streamwise velocity distributions to 𝜏𝑠
∗ (DNS vs. k- model, 𝑅𝑒𝜏 = 150) 
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Figure 3 shows a scaling relation for the rms value of the surface divergence, expressed by using the Taylor 

microscale 𝜆∗and the turbulent kinetic energy 𝑘∗.   Also, 𝜆∗ has been calculated from the root mean squares of 

the velocity fluctuation and its spatial gradient.  It is seen from the figure that this relation holds universally 

regardless of the sign and magnitude of the surface shear stress.   This means that the surface divergence can be 

universally expressed on the Taylor microscale regardless of the action of shear stress on the water surface, but 

the proportionality constant is different from the experimental results of Sanjou et al. (2015), and Tsumori and 

Sugihara (2007).  A further study is needed to explain quantitatively the reason for this difference. 

Let us consider the case where the transport of a passive scalar such as dissolved gas drives from the gas phase 

to the water phase across the water surface.   The scalar transport is induced by turbulent motions and the 

difference between the concentration at the surface 𝐶𝑠
∗ and that in the bulk 𝐶𝑏

∗.   In statistically-steady state, the 

scalar flux at the water surface 𝐹∗can be expressed by the following equation: 

𝐹∗ =
1

𝑅𝑒𝜏𝑆𝑐

𝜕𝐶∗

𝜕𝑦∗
|
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

=   𝑘𝐿
∗(𝐶𝑠

∗ − 𝐶𝑏
∗) . (12) 

Here the flux is defined to be positive downward from the water surface, 𝑘𝐿
∗ the gas transfer velocity, and Sc the 

Schmidt number.   When the fluctuation of the water surface can be ignored and the concentration boundary 

layer of scalar becomes sufficiently thin compared to the scale of near-surface turbulent vortices because of 

high Schmidt number, the following analytical solution can be obtained from the advection-diffusion equation 

under the stagnation approximation (e.g., see Awaya and Abe,1971): 

𝑘𝐿
+ = √

2

𝜋
𝑆𝑐− 

1
2√𝛽+ , 

 

(13) 

 

where + indicates the dimensionless quantity in the form of the viscous wall unit.   It is possible to discuss the 

effects of the surface shear stress through the comparison of the numerical results with Eq. (13). 

In order to investigate quantitatively physical parameters that control the surface scalar transport, we define the 

cross-correlation coefficients between the surface scalar flux and turbulent characteristic quantities as follows: 

 
τs
∗ = −0.3                                                              τs

∗ = 0.0                                                                τs
∗ = 0.3 

(a) Streamwise velocity fluctuation on water surface  

 
τs
∗ = −0.3                                                              τs

∗ = 0.0                                                                τs
∗ = 0.3 

 (b) Surface divergence  

 
τs
∗ = −0.3                                                              τs

∗ = 0.0                                                                τs
∗ = 0.3 

(c)    Scalar flux on water surface  
 

Figure 4.  Distributions of streamwise velocity fluctuation, surface divergence and scalar flux (DNS, 𝑅𝑒𝜏 = 150) 
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        𝐶𝑥(𝑟𝑥) =
〈𝐹∗

′
(𝑥∗, 𝑧∗)𝐴∗

′
(𝑥∗ + 𝑟𝑥 , 𝑧

∗)〉

𝐹𝑟𝑚𝑠
∗ 𝐴𝑟𝑚𝑠

∗
    (𝑥∗: steamwise direction)  

𝐶𝑧(𝑟𝑧) =
〈𝐹∗

′
(𝑥∗, 𝑧∗)𝐴∗

′
(𝑥∗, 𝑧∗ + 𝑟𝑧)〉

𝐹𝑟𝑚𝑠
∗ 𝐴𝑟𝑚𝑠

∗
    (𝑧∗: spanwise direction)  .

}
 
 

 
 

 (14) 

Here,  𝑟𝑥  and 𝑟𝑧  denote the distances in each direction from (𝑥∗, 𝑧∗) , respectively.  Also,  𝐹∗′(𝑥∗, 𝑧∗)  and 

𝐴∗′(𝑥∗, 𝑧∗) are the fluctuation components of the surface flux and turbulent quantities at (𝑥∗, 𝑧∗), indicating 

𝐹∗′(𝑥∗, 𝑧∗)＝𝐹∗(𝑥∗, 𝑧∗) − 〈𝐹∗(𝑥∗, 𝑧∗)〉 and   𝐴∗′(𝑥∗, 𝑧∗)＝𝐴∗(𝑥∗, 𝑧∗) − 〈𝐴∗(𝑥∗, 𝑧∗)〉. 

In this study, we consider the fluctuations of the surface divergence 𝛽∗, the vorticity 𝜔𝑥
∗  in the streamwise 

direction, and the vorticity 𝜔𝑧
∗ in the spanwise direction as the physical quantities of 𝐴∗′.  That is, the cross-

correlation coefficients express the degree of correlation between the scalar flux 𝐹 and the respective physical 

quantities at the distances separated by 𝑟𝑥 and 𝑟𝑧. 

Figures 4(a) to (c) show the two-dimensionally projected snapshots of the streamwise velocity fluctuation, the 

surface divergence, and the surface scalar flux on the water surface, obtained by the numerical results from DNS 

in the cases of 𝑅𝑒𝜏 = 150 and 𝜏𝑠
∗ = −0.3, 0.0, 0.3, and the abscissa and the ordinate stand for the 𝑥∗direction 

and the 𝑧∗direction, respectively.   In the case of 𝜏𝑠
∗ = 0, the negative velocity fluctuation region exists in a patch 

shape, and the positive surface divergence region is formed so as to correspond to them.   The surface flux also 

increases intensively in those regions.   For the respective velocity fluctuations of 𝜏𝑠
∗ = −0.3 and 0.3, the low-

speed region and the high-speed one appear as streaky patterns, which are similar to the low-speed streaks 

observed close to the bottom surface.  In addition, there are the patch areas deformed by the velocity shear, 

which correspond to the place at which the low-concentration fluid in the bulk region rises to the water surface.   

However, for the surface divergence and the scalar flux, there exists a great difference between the cases of 

𝜏𝑠
∗ = −0.3 and 0.3.   In the case of 𝜏𝑠

∗ = −0.3, the surface divergence and the scalar flux become considerably 

smaller than those of 𝜏𝑠
∗ = 0 and 0.3.   Also, the degree of the agreement between the spatial patterns of the 

surface divergence and the scalar flux decreases in the case of 𝜏𝑠
∗ = 0.3, suggesting that the mechanism of scalar 

transport is governed by a certain dynamics other than the surface divergence. 

Figure 5 shows comparisons between the local scalar transfer velocity and the numerical results from DNS.  The 

solid line drawn in the figure shows the analytical solution of Eq. (13) and the numerical results have been 

filtered by the moving average in an infinitesimal interval of ∆𝛽∗ = 0.02.   When the surface shear stress is 

𝜏𝑠
∗ = 0, the numerical result in the positive region of  𝛽+ agrees well with the analytical solution, inapplicable 

to the negative region because of its definition.  The scalar transfer velocities vary with the surface shear stress, 

and those when  𝜏𝑠
∗ = 0.3 and −0.3 become smaller compared to the case of 𝜏𝑠

∗ = 0.   It is concluded from this 

figure that the scalar transfer velocity depends on the sign and magnitude of 𝜏𝑠
∗.   In particular, the mechanism 

of scalar transport under large positive surface stress seems to change from the surface divergence to the other 

physical mechanism. 

Figure 6 shows the dependence of the averaged scalar flux computed by DNS on the surface shear stress, and 

the shear-dependence of the volume flow rate obtained from both of DNS and the standard 𝑘‐ 휀 model.  The 

volume flow rate almost conserves regardless of the surface shear stress for the both results simulated by DNS 

and 𝑘‐ 휀 model.   This figure demonstrates that the scalar flux is obviously decreased in the region of  𝜏𝑠
∗ < 0, 

       
β+                                                                            τs

∗ 
Figure 5. Relation of scalar transport velocity             Figure 6. Dependence of total scalar flux and volume  

with surface divergence: Analytical                            flow rate on surface shear stress:  
solution and DNS (𝑅𝑒𝜏 = 150)                                   DNS (𝑅𝑒𝜏 = 150) and k- model 
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whereas in the range of  𝜏𝑠
∗ > 0, the flux is almost kept to be constant.   Such an asymmetry is consistent with 

the results shown in Fig. 4. 

Figures 7 and 8 show the cross-correlation coefficients among the scalar flux, the surface divergence and the 

vorticities in the streamwise and spanwise directions, where the vorticities have been calculated at the 

dimensionless depth of 𝑦∗ ≈ 0.996.   First, let us discuss the correlations between the surface scalar flux and 

the surface divergence.  The cross-correlation coefficient 𝐶𝑥(𝑟𝑥) when 𝜏𝑠
∗ = 0 for the relation with the surface 

divergence shown in Fig. 7 (a) is found to be symmetric with respect to the origin of 𝑟𝑥 = 0, whereas for the 

other values of 𝜏𝑠
∗, it becomes asymmetric.   When the positive shear stress, 𝐶𝑥(𝑟𝑥) increases relatively in the 

region of 𝑟𝑥 > 0.  Conversely, in the cases of 𝜏𝑠
∗ = −0.1 and − 0.2, the downward overshoot of 𝐶𝑥(𝑟𝑥) is 

observed in the region of 𝑟𝑥 > 0.   In Figure 8(a), the cross-correlation coefficients 𝐶𝑧(𝑟𝑧) shows symmetric 

shapes with respect to 𝑟𝑧 = 0 regardless of the sign and magnitude of 𝜏𝑠
∗.    The maximum values of the cross-

                                                  
(a) Surface divergence β∗                                                      (a) Surface divergence  β∗ 

                                                 
(b) Streamwise vorticity ωx

∗                                                 (b) Streamwise vorticity ωx
∗  

                     
(c) Spanwise vorticity ωz

∗                                                     (c) Spanwise vorticity ωz
∗ 

 
Figure 7. Cross correlation for streamwise direction            Figure 8. Cross correlation for spanwise direction 

𝐶𝑥(𝑟𝑥) (DNS, 𝑅𝑒𝜏 = 150)                                                      𝐶z(𝑟z) (DNS, 𝑅𝑒𝜏 = 150) 
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correlation coefficients  𝐶𝑥(𝑟𝑥)  and  𝐶𝑧(𝑟𝑧) take 0.75 approximately when 𝜏𝑠
∗ = 0, supporting that the surface 

divergence is an important physical quantity for describing the scalar flux at the water surface.  

For the streamwise correlation of the flux with 𝜔𝑥
∗ shown in Fig. 7(b), there is no correlation for the respective 

values of 𝜏𝑠
∗.   This means that it is meaningless for the scalar transport to move the streamwise vortex line on 

target point in the streamwise direction.  The values of 𝐶𝑧(𝑟𝑧) for 𝜔𝑥
∗  in Fig. 8(b) is seen to be obviously 

antisymmetric with respect to 𝑟𝑧 = 0.   These facts indicate that the surface scalar flux increases when the vortex 

structure is arranged so as to induce an upward flow efficiently and make the concentration boundary layer of 

scalar much thinner.  From the streamwise correlation with 𝜔𝑧
∗ shown in Fig. 7(c), it is seen that the relation of 

𝐶𝑥(𝑟𝑥) with 𝜏𝑠
∗ becomes complicated especially in the case of the negative shear stress.  Also, the correlation 

drawn in Fig. 8(c) shows symmetrical variation with respect to 𝑟𝑧 = 0, but the behavior is complicated in the 

case of negative shear stress like that in Fig. 7(c).   The characteristics of these correlations may be because the 

interaction of the shear flow turbulence with turbulence originated by the bursting near the bottom surface, and 

it is expected that understanding of the interaction contributes to the modeling of the air-water scalar transport. 

4. CONCLUSIONS 

We have investigated the response of open-channel turbulence to wind-driven surface shear stress by using the 

numerical methods of DNS and the standard 𝑘‐ 휀 model.   It has been seen that the vertical distributions of the 

streamwise velocity and the Reynolds stress vary depending on the positive or negative sign of the surface shear 

stress.  The numerical results from DNS have provided that under the condition of negative shear stress, the 

streamwise velocity around the half-water depth is increased than that in the case of no shear stress.  The surface 

divergence calculated from DNS has been confirmed to be universally scaled with the Taylor microscale 

regardless of the positive or negative sign of the shear stress.  Though the volume flow rate doesn’t change 

regardless of the variation of the surface shear stress, the scalar flux at the water surface is found to be changed 

by the sign of the surface shear stress.  In addition, the cross-correlation coefficients between the scalar flux and 

the physical quantities such as the surface divergence and the vorticities close to the water surface have been 

investigated to examine turbulent motions controlling the scalar transport at the water surface.   It has been 

concluded from the cross-correlation coefficients that the scalar flux considerably increases when vortex 

structure is arranged so as to induce a strong upward flow toward the water surface. 
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