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ABSTRACT 

Japan has a diversity of climatic division and one of the heaviest snowfalls in the world. To estimate streamflow 
characteristics throughout Japan is one of the greatest challenges for hydrologists. Recently, artificial neural 
networks (ANNs) gained an attention as an approach to estimate streamflow (Q) characteristics in absent of 
discharge data. We developed ANNs to estimate the Q characteristics inputting enormous basin characteristics 
throughout Japan. The Q characteristics were obtained from observed discharge data in 448 target basins. We 
employed the 14 Q characteristics including mean annual runoff height and flow percentiles in flow duration 
curves. The 175 basin characteristics including climate, land use, geology, soil, and topography were used as 
input data of the network. The network performed the best in mean annual runoff height (R2 = 0.72) and the 
worst in 99 percentile of flow duration curves (R2 = 0.18). We also evaluated the relationship between Q 
characteristics and basin characteristics. The results showed that the Q characteristics were explained 
dominantly by precipitation and aridity index. We found a limited geological effect on low flow regime, whose 
effect may have been weakened by extreme snowmelt contributions. We validated a relationship between the 
number of training data and the performance of ANNs. The results showed that increasing training data had a 
possibility for improvement of the accuracy, especially in low flow regimes. This will be a hope to improve the 
performance in low flow regimes. 

Keywords: absent of discharge data, observed streamflow, cross validation 

1. INTRODUCTION 

Japan has a climatic diversity including cold, subarctic, temperate, and tropical zone. The climatic conditions 
influences on not only the overall water balance (Budyko 1974; Zhang et al., 2004; Porporato et al., 2004; Milly, 
2001) but also baseflow (Price, 2011). In addition, Japan has one of the heaviest snowfalls in the world (Kazama 
and Sawamoto, 1997). Some areas experience usually snow depths of more than 5 m even in law latitudes 
(Kazama et al., 2008). These conditions indicate a difficulty to estimate flow regimes throughout Japan. 

In recent years, Beck et al. (2015) and Barbarossa et al. (2018) estimated streamflow regimes globally using 
artificial neural networks (ANNs). These studies set streamflow (Q) characteristics as the outputs and set basin 
characteristics (e.g., climate, topography, land use) as the inputs, and then train the ANNs by using global and 
enormous observed discharge data. In other words, the ANNs can estimate Q characteristics based on a 
relationship between Q characteristics and basin characteristics in other basins. According to these studies (Beck 
et al., 2015; Barbarossa et al., 2018), the ANNs showed highly performances. Beck et al. (2015) compared 
performances of the ANNs to that of some macroscale hydrological models. The results showed that the ANNs 
outperformed the macroscale hydrological models in all Q characteristics. These facts indicate that the ANNs 
are one of the most effective approaches to estimate streamflow regimes in absent of discharge data. 

In this study, we developed the ANNs to estimate streamflow regimes throughout Japan. The objective of this 
study is to validate the performance of ANNs quantitatively. Note that there are dams or hydropower weirs in 
major Japanese basins. Thus, we selected sites gauging discharge with no dams and hydropower weirs 
upstream as target basins. Next, we prepared the Q characteristics and basin characteristics for the selected 
basins, and then developed the ANNs. Finally, we validated performances of the ANNs quantitatively. 
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2. TARGET BASINS 

We selected target basins from gauging points published in Database of Dams (http://mudam.nilim.go.jp/home) 
and Water Information System (http://www1.river.go.jp/). In order to eliminate anthropogenic impacts on flow 
regimes, we searched basins with no dams and hydropower weirs upstream using dam almanac (Japan Dam 
Foundation, 2012) and map of Geospatial Information Authority of Japan (https://maps.gsi.go.jp/). We also set 
that catchment size was larger than 5 km2 and the period of discharge records were longer than 5 years as the 
additional criteria for the selection. Finally, 448 target basins were selected throughout Japan (Fig. 1). The 
overview of the target basins shown in Table 1.  

3. DATASET 
The ANNs need Q characteristics and basin characteristics. These are prepared as below. 

3.1  Q characteristics 

In this study, we set the Q characteristics annually applying the unit of runoff height. The Q characteristics were 
consisted of mean annual runoff height (QMEAN) and daily flow percentiles in the flow duration curve (Q1, 
Q5, Q10, Q20, Q30, Q40, Q50, Q60, Q70, Q80, Q90, Q95, Q99). For example, Q20 means a 20 percentile value 
in the flow duration curve. Since we set these characteristics annually, the total number of data in one 
characteristic showed 7812.  

3.2 Basin characteristics 

We set the 175 basin characteristics relating to climate, land use, geology, soil, and topography (Table 2). The 
data source and the resolution are shown in Table 2. Since these data sources were expressed by GIS, we 
integrated the basin characteristics using ArcGIS 10.6, and then extracted them from a coverage of each basin. 
The resolutions of basin characteristics were adjusted by using nearest neighbor interpolation so that we can 
treat the characteristics even in different resolutions (Table 2). The indices of precipitation and snow were 
originated from daily data showing more than 1 (mm/d). We applied APHRO_JP (Kamiguchi et al., 2010) 
which was an observed rainfall database throughout Japan to the data source of precipitation indices. The 
snow indices were applied to Agro-Meteorological Grid Square Data (Kominami et al., 2015) which was 
calculated by snow water equivalent model considering heat and radiation balance. While the indices of 
precipitation and snow considered the time variability corresponding to the period of discharge records, other 
indices were set as a constant value at the basin. Although aridity index was calculated by dividing mean 
annual precipitation by annual potential evaporation, mean annual precipitation based on APHRO_JP has a 
time variability. Thus, we applied the long-term averaged value originated from National Land Numerical 

Table 1. Overview of target basins. 
 

Number of 
basins 

Catchment size [km2] Period of records [y] 
Median Average Median Average 

448 72.3 163.6 19 18.6 
 

 

 
Figure 1. Location of target basins. 

http://www1.river.go.jp/
https://maps.gsi.go.jp/
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Information (http://nlftp.mlit.go.jp/ksj-e/index.html) to the mean annual precipitation in the calculation. The 
database of National Land Numerical Information was heavily used to calculate the indices of climate, land 
use, geology, soil, and topography (Table 2). The references to classify soils and geology were shown in Table 
2. Biswal and Marani (2010) developed a framework to estimate a runoff recession parameter based on the 
river network. The runoff recession parameter was estimated by analyzing the elevation data in the target 
basin (Biswal and Marani, 2010), which was added as a basin characteristic 

Table 2. Basin characteristics. 
 

  
Description Unit Data source Time  

variability Calculation Resolution 

Climate 

Mean annual precipitation mm/y APHRO_JP (Kamiguchi et al., 
2010) +  180s 

Mean daily precipitation mm APHRO_JP (Kamiguchi et al., 
2010) +  180s 

Mean frequency of daily 
precipitation 1/d APHRO_JP (Kamiguchi et al., 

2010) +  180s 

Mean annual maximum 
daily precipitaion mm APHRO_JP (Kamiguchi et al., 

2010) +  180s 

Precipitation seasonality - APHRO_JP (Kamiguchi et al., 
2010) + Calculated following 

Beck et al. (2015). 180s 

Mean annual snow water 
equivalent mm/y 

Agro-Meteorological Grid 
Square Data (Kominami et al., 
2015) 

+  ~1km 

Mean daily snow water 
equivalent mm 

Agro-Meteorological Grid 
Square Data (Kominami et al., 
2015) 

+  ~1km 

Mean frequency of daily 
snowfall 1/d 

Agro-Meteorological Grid 
Square Data (Kominami et al., 
2015) 

+  ~1km 

Mean annual potential 
evaporation mm/y 

CGIAR-CSI Global-Aridity and 
Global-PET Database (Zomer et 
al., 2007) 

  ~1km 

Potential evaporation 
seasonality - 

CGIAR-CSI Global-Aridity and 
Global-PET Database (Zomer et 
al., 2007) 

 Calculated following 
Beck et al. (2015). ~1km 

Aridity index - National Land Numerical 
Information (G02) 

 
(Mean annual 
precipitation)/(Mean 
annual potential 
evaporation) 

~1km 

Mean temperature ℃ National Land Numerical 
Information (G02) 

  ~1km 

Maximum temperature ℃ National Land Numerical 
Information (G02) 

  ~1km 

Minimum temperature ℃ National Land Numerical 
Information (G02) 

  ~1km 

Amount of global solar 
radiation MJ/m2 National Land Numerical 

Information (G02) 
  ~1km 

Sunshine duration h National Land Numerical 
Information (G02)     ~1km 

Land use 
Land use classification of 
National Land Numerical 
Information (11 groups) 

% National Land Numerical 
Information (L03-b_r)     ~100m 

Geology and 
soils 

Large classification of 
surface geology (7 groups) % National Land Numerical 

Information (G05_003) 
 Classified following 

Yokoo and Oki (2009). ~1km 

Geological time (6 groups) % National Land Numerical 
Information (G05_003) 

 Classified following 
Yokoo and Oki (2009). ~1km 

Geological classification of 
Mushiake et al. (1981) (7 
groups) 

% National Land Numerical 
Information (G05_003) 

 Classified following 
Mushiake et al. (1981). ~1km 

Soil classification of 
National Land Numerical 
Information (79 groups) 

% National Land Numerical 
Information (G05_004) 

  ~1km 

Soil classification of Yokoo 
et al. (2001) (3 groups) % National Land Numerical 

Information (G05_004)   Classified following 
Yokoo et al. (2001). ~1km 

Topography 

Topographical classification  
of National Land Numerical 
Information (40 groups) 

% National Land Numerical 
Information (G05_002) 

  3s 

River length m HydroSHEDS (Lehner et al., 
2008) 

  3s 

Maximum elevation m HydroSHEDS (Lehner et al., 
2008) 

  3s 

Minimum elevation m HydroSHEDS (Lehner et al., 
2008) 

  3s 

Catchment size km2 HydroSHEDS (Lehner et al., 
2008) 

  3s 

Slope - HydroSHEDS (Lehner et al., 
2008) 

  3s 

Runoff recession parameter 
of Biswal and Marani 
(2014) 

- HydroSHEDS (Lehner et al., 
2008)   

Calculated following 
Biswal and Marani 
(2010) 

3s 
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4. METHODS 

4.1 Development of ANNs 

4.1.1 Basic design 

In this study, we developed ANNs to estimate Q characteristics having a middle layer (Fig. 2(a)) as with previous 
studies (Beck et al., 2015, Barbarossa et al., 2018). Neurons in the ANNs were distinguished by the location of 
neuron i and layer j (Fig. 2(a)). The input layer received 175 basin characteristics and the output layer served a 
Q characteristic. We set 10 neurons in the middle layer. Generally, ANNs can obtain outputs through forward 
propagation from input layer to output layer. In this process, a following equation is applied: 

, , , , ,
1

( ) ( )
l

i j i j i j i j i j
i

y f u f b x w
=

= = +∑  (1) 

where yi,j is the output of the neuron (i, j), f(ui,j) is the activating function, l is the number of neurons at the upper 
layer, xi,j is the input of the neuron (i, j), and wi,j and bi,j express the weight and bias respectively. The schematic 
diagram of Eq. (1) is shown in Fig. 2(b). In this study, we employed rectified linear function fmid(ui,j) in the 
middle layer and identity function fout(ui,j) in the output layer as the activating function respectively. These 
equations are expressed as below: 

, ,( ) max( ,0)mid i j i jf u u= , (2) 

, ,( )out i j i jf u u= . (3) 

We also applied normalization to the basin characteristics using following equation: 

min max minˆ ( ) ( )v v v v v= − −  (4) 

where v is a target index, vmin and vmax are the maximum and the minimum of v respectively, and v̂  is the 
normalized v.  

4.1.2 Learning method 

Learning of ANNs is achieved by optimizing wi,j and bi,j so that the output error is minimized. First, we need 
to get the error through backward propagation from the output layer to the input layer. In this study, we 
employed following squared error as the error function: 

2
1,3

1 ( )
2

E y T= −  (5) 

where E is the error at the output layer, y1,3 is the output value, and T is the true value for y1,3. Next, we 
updated wi,j and bi,j by gradient descent method. The equation is expressed as below: 

( ) ( )
, , , ( )

,

t t
i j i j i j t

i j

Ew w
w

η ∂
= −

∂
 (6) 

where t is the number of learning steps, and ηi,j is a learning coefficient. The gradient ( )
,
t

i jE w∂ ∂  in Eq. (6) was 
obtained by backpropagation algorithm (Rumelhart et al., 1986). The update method for bi,j is same as wi,j. In 
fact, we applied stochastic gradient descent (LeCun et al., 1998) to optimize the learning process. 

 

 
Figure 2. Schematic diagram of (a) structure and (b) function in ANN. 
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4.2 Validation of ANNs 

In this study, we conducted 5-hold cross validation to evaluate the accuracy and the generalization 
performance of ANNs. First, we separated all target basins (i.e., 448) into 5 groups. Next, we set 1 group as 
the test data and set the other 4 groups as the training data. After the learning process, we calculated the 
determination coefficient R2 between true values and output values for training data groups to evaluate the 
training accuracy. In order to evaluate the generalization performance of ANNs, we calculated the R2 between 
true values and output values for test data group. This validation step was repeated 5 times to include the all 
target basins as the test data group. Finally, we averaged these R2. Furthermore, we evaluated the impact of the 
number of training data on the performance through changing the number of training data groups from 1 to 4.  

4.3 Rank correlation analysis 

Generally, it is difficult to understand a relationship between the input values and the output values in ANNs. 
Thus, we conducted Spearman’s rank correlation analysis between the Q characteristics and the basin 
characteristics. 

5. RESULTS 

The results of 5-hold cross validation are shown in Fig. 3. The all R2 for training data showed higher than that 
of test data (Fig. 3). The highest performance of test data was shown in QMEAN (R2 = 0.72). According to the 
results from Q1 to Q99, there was a peak of the performance in Q10 (R2 = 0.66). In addition, the performance 
decreased remarkably in low flow regimes (e.g., Q99: R2 = 0.18). We also found the performance increasing 
with the number of training data groups increasing (Fig. 4). Note that we focused on the results of QMEAN, 
Q10, Q50, and Q90 for simplicity from here (i.e., Fig. 4, Table 3 - 6).  

 

 
Figure 3. Results of 5-hold cross validation. 

 

 
Figure 4. Results of the impact of the number of training data on the performance. 
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Table 3. Top 10 basin characteristics for Spearman’ rank correlation coefficient (p < 0.001) in QMEAN. 

 
Description ρ 
Mean annual precipitation 0.76 
Aridity index -0.74 
Mean frequency of daily precipitation 0.62 
Agricultural land exept rice paddy -0.47 
Podozolic soil (dry) 0.44 
Mean daily snow water equivalent 0.43 
Mean daily precipitation 0.41 
Forest area 0.39 
Rocky area 0.37 
Podozolic soil (wet) 0.35 

 
 

Table 4. Top 10 basin characteristics for Spearman’ rank correlation coefficient (p < 0.001) in Q10. 
 

Description ρ 
Mean annual precipitation 0.70 
Mean daily precipitation -0.70 
Mean annual maximum daily precipitaion 0.67 
Aridity index -0.50 
Potential evaporation seasonality 0.46 
Minimum temperature 0.38 
Mean temperature 0.37 
Agricultural land exept rice paddy -0.37 
Brown forest soil (Andosols) -0.36 
Andosols (type A) -0.36 

 
 

Table 5. Top 10 basin characteristics for Spearman’ rank correlation coefficient (p < 0.001) in Q50. 
 

Description ρ 
Aridity index -0.68 
Mean annual precipitation 0.63 
Mean frequency of daily precipitation 0.59 
Podozolic soil (dry) 0.48 
Mean daily snow water equivalent 0.44 
Mean annual snow water equivalent 0.42 
Sunshine duration -0.39 
Podozolic soil (wet) 0.39 
Agricultural land exept rice paddy -0.37 
Rocky area 0.37 

 
 

Table 6. Top 10 basin characteristics for Spearman’ rank correlation coefficient (p < 0.001) in Q90. 
 

Description ρ 
Aridity index -0.55 
Mean annual precipitation 0.49 
Mean frequency of daily precipitation 0.42 
Podozolic soil (dry) 0.42 
Podozolic soil (wet) 0.37 
Rocky area 0.34 
Mean daily snow water equivalent 0.33 
Volcanic rock 0.33 
Plutonic rock -0.32 
Mean annual snow water equivalent 0.31 
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The rank correlation coefficients between the Q characteristics and basin characteristics are shown in Table 3 
– 6. Note that these rank correlation coefficients were described up to the top 10 showing high correlation 
(Table 3 – 6). According to Table 3 – 6, the precipitation indices and aridity index showed high correlation for 
the all Q characteristics. In addition, trends of the rank correlation were similar to the performance of ANNs 
(Fig. 3). 

6. DISCUSSIONS 

Beck et al. (2015) estimated QMEAN with R2 = 0.88. Barbarossa et al. (2018) also estimated mean monthly 
streamflow with R2 = 0.91. Compare to these studies, the results of this study showed a bit low performance 
for QMEAN (R2 = 0.72). The difference in these performances may derive from the difference in the number 
of target basins. Although there was 448 target basins in this study, Beck et al. (2015) and Barbarossa et al. 
(2018) applied 4,079 and 6,600 basins respectively. In addition, the scale of catchment size in this study was 
different from these previous studies. Since this study targeted on only Japanese basins with no dams and 
hydropower intakes upstream, the median basin size was 72.3 km2 (Table 1). On the other hand, the range of 
basin size in Beck et al. (2015) showed from 10 to 10,000 km2 in global scale. Although Barbarossa et al. 
(2018) did not described the basin size in detail, they also targeted on global scale basins. Parajka et al. (2013) 
investigated on a relationship between hydrological model performances in ungauged basins and the basin 
scales, and then found a clear pattern of an increase of the performance with the basin scale. This pattern fit 
naturally into the difference in the performance between this study and previous studies (Beck et al., 2015, 
Barbarossa et al., 2018). Parajka et al. (2013) also suggested the following two reasons for the pattern. First, 
there is a trend for an increasing number of raingauges within a catchment with the basin size increasing. The 
second is the aggregation effect of runoff. As the basin scale increases, some of the hydrological variability is 
averaged out due to an interplay of space–time scale processes, which will improve hydrological simulation. 
In addition, we observed a high impact of agricultural land use on QMEAN (Table 3). This anthropogenic 
impact may make a difficulty to estimate QMEAN. Furthermore, there was also a snow effect on QMEAN 
(Table 3). Although Beck et al. (2015) conducted some regression analysis between Q characteristics and 
basin characteristics, QMEAN in Beck et al. (2015) did not show a significant correlation with their snow 
index. Incidentally, Barbarossa et al (2018) did not apply any snow indices to their ANNs. It is widely known 
that snow particles are under-caught at raingauges due to wind (Wolff et al., 2015). The snow under-catch can 
obstruct to know true water balance. Therefore, QMEAN in this study has a possibility to have received the 
impact of snow under-catch. 
Yokoo and Oki (2010) investigated on a relationship between Q characteristics and basin characteristics for 14 
basins (100 km2 >) in Japan. They found that climatic impacts on Q decreased as the flow regime became low. 
This trend was consistent with this study (Table 3 - 6) and Beck et al (2015). This fact indicates a difficulty to 
estimate low flow regime thorough using only climatic indices. Musiake et al. (1981) revealed a geological 
impact on low flow regime in Japan. Yokoo and Oki (2010) also observed that the lowest flow index 
significantly correlated with geological indices, whose correlation coefficients were higher than that of 
climatic indices. Although Q90 in this study correlated with some geological indices (Table 6), the correlation 
coefficients were lower than that of climatic indices. Note that Yokoo and Oki (2010) selected their target 
basins in no snow area to eliminate effects of snowmelt on flow regimes. Actually, Japan is one of the 
heaviest snowfall countries in the world (Kazama et al., 2008). Thus, we can see some effects of snow indices 
even on Q90 (Table 6). This fact indicates that extreme snowmelt contributions obstruct to detect geological 
effects on low flow regimes. Nevertheless, we found that the accuracy of Q90 had the highest sensitivity for 
increasing training data. This will be a hope to improve the performance in low flow regimes. 

7. CONCLUSIONS 

We developed ANNs to estimate Q characteristics in absent of discharge data inputting basin characteristics 
(e.g., climate, topography, land use) throughout Japan. The performance was the highest in QMEAN (R2 = 
0.72) and the lowest in Q99 (R2 = 0.18). We found that the performance of the QMEAN showed a bit lower 
than that of previous studies (Beck et al., 2015; Barbarossa et al., 2018). The basin scale may cause this fact 
since a large basin scale increases raingauge density and averages out some of the hydrological variability. In 
addition, our results indicated that the impacts of agricultural land use and snow under-catch made difficulties 
to estimate QMEAN. We also evaluated relationships between Q characteristics and basin characteristics. The 
result showed precipitation and aridity index related with all Q characteristics dominantly. In addition, these 
climatic impacts became small in low flow regimes. Although some previous studies (Musiake et al., 1981; 
Yokoo and Oki, 2010) found clear geological effects in low flow regimes, we observed the limited trend. 
Given there was a snow effect in Q90 and Japan is one of the heaviest snowfall countries, we can point out 
that extreme snowmelt contributions obstructs to detect geological effects on low flow regimes. Nevertheless, 
we found that the performance of Q90 had the highest sensitivity for increasing training data, which indicates 
the potential for the improvement in low flow regimes. 
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