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ABSTRACT 

Serious disasters with enormous damage can change the common recognition of the standard of disaster 

prevention plans. For example, The Kanto-Tohoku heavy rainfall in September 2015 caused a severe flood 

disaster in the Kinugawa river basin. Before these severe disasters that occurred in recent years. The Basic 

standard of disaster prevention plans is to see if a plan can respond to a designed force of certain return period. 

This is usually called structural countermeasures. However, after these disasters, society now recognized that 

both structural countermeasures and non-structural countermeasures are necessary. On the other hand, unlike 

earthquakes and tsunami, there is usually enough time for residents to evacuate in flood disasters if they are 

appropriately informed. Thus, the prediction of runoff is a critical index for evacuation. To make the prediction, 

it needs to consider the uncertainty of rainfall intensity and model parameters in the rainfall-runoff analysis. 

Besides, how to consider the basic nature of uncertainty in the rainfall-runoff system had always been an 

important topic in hydrology. M.Hino(1974) had first introduced the Kalman filter in forecasting the rainfall-

runoff process which considered the uncertainty of the process, since then methods such as Kalman filter, 

ensemble Kalman filter, particle filter, data assimilation, had been used to consider the uncertainty effects in the 

rainfall-runoff process. However, these methods are based on filtering theory and statistical methods, which 

cannot recognize the physical meaning of the uncertainty. The present study is based on the theory of stochastic 

differential equation, aimed at suggesting a new way of rainfall-runoff analysis which can not only consider the 

uncertainty in the system but also identify the physical meaning of these uncertainties 
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1. INTRODUCTION 

The present study aimed at suggesting a rainfall-runoff analysis that can consider the uncertainties of rainfall 

and model parameters based on the theory of stochastic differential equation. In the second section, we will 

introduce a physical-based, deterministic rainfall-runoff model. The parameters of this model have clear 

physical meanings so that the uncertainties of the characteristic of the river basin can be directly concerned. In 

the third section, we will introduce how to consider the uncertainties of rainfall density and parameters using 

the theory of stochastic differential equation. 

2. DETERMINISTIC RAINFALL-RUNOFF ANALYSIS 

A physical-based, deterministic rainfall-runoff model was proposed by S.Kure and T.Yamada(2009) . This 

model is a simplification of the continuity equation and the momentum equation of the rainfall-runoff process 

on a mountain slope.  
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Eq. (1) is the basic equation. 𝑎0 and β are parameters directly determined by the physical properties (soil quality, 

slope gradient, etc.) of the basin, which shown in Eq.(2). 𝑖  is the  slope gradient, 𝑘𝑠  is the coefficient of 

permeability of saturated soil[cm/sec], 𝐷  is the thickness of Permeable layer[cm], 𝛾  is a non-dimensional 

parameter which represents the permeability of the soil, 𝑤 is the effective porosity, and 𝐿 is the length of the 

slope[m]. q (t) is the runoff rate [mm / h], which is the flow rate at the dominant section of the basin divided by 

the basin area. r (t) is the basin average effective rainfall intensity [mm / h]. The concept of the basic equation 
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is shown in Figure 1. When the effective rain intensity r (t) is substituted into the equation, it can be solved, and 

the time series of runoff rate, discharge, or water level at the dominant section of the basin can be obtained. 

However, since it is difficult to predict rainfall intensity every moment, and since the physical properties of the 

basin may vary over time, it is necessary to divide the rainfall intensity and parameters into deterministic 

(currently predictable) part and uncertain (currently difficult to predict) part.  

Figure 2. The concept of the rainfall-runoff process on a mountain slope 

3. RAINFALL-RUNOFF ANALYSIS BASED ON THE THEORY OF STOCHASTIC 

DIFFERENTIAL EQUATION 

3.1 How to consider the uncertainty of rainfall intensity 

To consider the uncertainty of rainfall intensity, we can first separate the rainfall into �̅�(𝑡) and 𝑟′(𝑡) two parts,  

𝑑𝑞

𝑑𝑡
= 𝑎0𝑞

𝛽(�̅�(𝑡) + 𝑟′(𝑡) − 𝑞) (3) 

As 𝑟′(𝑡) is the uncertainty part of effective rainfall, which is a random variable, Eq.(3) became a differential 

equation that cannot be solved directly. Acrodding to K.Yoshimi, Y.Yamada’s(2016) work, by applying the 

theory of stochastic differential equation, which suggested by K.Ito(1946), we can prove that the probability 

density function of q follows the following Fokker-Planck type equation. 
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𝑎0 and β are the same parameters as in Eq.(1), 𝑃(𝑞, 𝑡) is the probability density function of q over time, 𝜎 is the 

standard division of 𝑟′(𝑡), and 𝑇𝐿 is the interval which self-correlation function of 𝑟′(𝑡) goes to zero. By solving 

Eq.(4), we can get the time  

 

Figure 2. Solution of the basic equation of rainfall-runoff system in slope（left：Not considering rainfall uncertainty, 

right：Considering rainfall uncertainty） 
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Figure 3. The time evolution of the probability density function of runoff rate (Fokker-Planck equation’s solution) 

 

3.2 How to consider the uncertainty of Parameters 

If we directly applied the method mentioned in the previous section, the parameters will also need to be divided 
into two parts, like rainfall intensity. However, the properties of the parameters’ uncertainty and the rainfall’s 
uncertainty are quite different. The deterministic component and the uncertain component correspond to the 
fluctuation on the long-time scale and the fluctuation on the short-time scale, respectively. In the case of rainfall, 
the fluctuation component on the long-term scale becomes the time average of the observed values, and the 
uncertainties of the observed values at each time are canceled out by the effect of the average. However, the 
fluctuation component on the short-time scale has greater uncertainty. On the other hand, since the parameters 
represent the physical properties of the basin, they are relatively stable, so that the fluctuation on the short-time 
scale is small. However, the fluctuation components on the long-time scale cannot be directly observed. 
Therefore, when considering the uncertainty of the parameters, it is necessary to include the uncertainty of the 
fluctuation component on the long-term scale in the Fokker-Planck equation.  

Since the fluctuation component of the short-time scale is treated as a random external force of the system, it is 
not included in the independent variable of the probability density function of the system variable. In Eq.(4), 
the independent variables for P are q and t. However, when considering the uncertainty of the fluctuation 
component on a long time scale, the variable cannot be treated as an external force and becomes an internal 
variable of the system. Therefore, when considering the uncertainties of the parameters 𝑎0 and β in Eq.(1), the 
independent variables of the probability density function are, q, α, β, and t. When describing a physical system 
with simultaneous ordinary differential equations, if the number of equations does not match the number of 
internal variables, the system will not be closed, so equations that describe the time evolution of 𝑎0 and β will 
also be required. Therefore, Eq.(1) becomes the following Eq.(5): 
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For simplicity, considering only the uncertainties of the fluctuation components on the long time scale of the 
parameters 𝑎0 and β, the Fokker-Planck equation corresponding to Eq.(5) is as follows. 
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Comparing Eq. (4) and Eq. (6), the right side of Eq. (6) is 0 because short time scale fluctuation components of 
𝑎0  and β are not considered. Although the left side of both equations is similar in form, it is not the same 
equation because the independent variables of P are different. Eq. (4) cannot consider the uncertainties of 𝑎0 
and β, while Eq. (6) can treat the probability distribution of 𝑎0  and β as the initial condition. Finally, by 
integrating the solution P (q, 𝑎0, β, t) of Eq. (6) with respect to 𝑎0 and β, the probability density function P (q, 
t) of the runoff hight q is obtained. 

In order to discuss the properties of Eq. (6), we used the following rainfall event as an example. The target basin 
is the Kusaki Dam basin in Japan. Kusaki Dam is a dam constructed in the upper stream of the Watarase River 
in the Tone River system. The basin area controlled by the dam is about 254 km2, and the outline of the basin 
is shown in Figure 4. 
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Figure 4. The basic information about Kusaki dam river basin 

The flood event selected was from August 8, 2003 to August 12, 2003. The total rainfall is about 250mm. The 
calculation conditions are listed as follows: Not considering the uncertainties of rainfall intensity. Assuming 
that the uncertainties of the model parameters 𝑎0  and β follow a normal distribution, set 𝑎0 , β to 
𝑁(0.045, (𝑘 ∗ 0.045)2),𝑁(0.41, (𝑘 ∗ 0.41)2), where N is the normal distribution, and k is a coefficient that 
represents the standard deviation as a percentage to the average value. In the present study, k = 10%, 20%, and 
30%,3 cases were calculated. 

 

Figure 5. Rainfall-runoff analysis of 2003-08-08 rainfall event in Kusaki dam river basin, considering the uncertainty of 

model parameters 

Figure 5 shows the analysis results. The left side figure shows the solution of the Fokker-Planck equation 
directly, and right side figure shows the range of one standard deviation above and below the mean value and 
the observation of runoff. If the distribution of the runoff height q can be approximated by the normal 
distribution, the probability that the observed value falls into the range shown in the figure will be about 68%, 
so this range can also be considered as the prediction interval with 68% reliability. As shown in Fig. 5, the 
prediction range near the peak was the widest, and its width was about 25% above and below the average. On 
the other hand, comparing the 3 cases(k = 10%, 20%, and 30%), it was found that even if the standard deviation 
of the parameter increased, the prediction interval hardly changed. 

4. CONCLUSIONS 

The present suggested a rainfall-runoff analysis method based on the theory of stochastic differential equation. 

Uncertainty of rainfall and model parameters had been considered, and the control equation(Fokker-Planck type 

equation) of the probability density function of runoff height had been derived. This equation can be used to 

discuss how the uncertainties in the rainfall-runoff process affect the final result and to identify the over flow 

risk in flood events. 
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