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ABSTRACT 

Accurate and reliable long-term forecasting of reservoir inflow is necessary for efficient water resources’ 

planning and management. In this study, a hybrid model using discrete wavelet transform (DWT) and the 

nonlinear autoregressive exogenous (NARX) neural network is developed for the simulation of the monthly 

inflow into Bhumibol and Sirikit reservoirs in Thailand under present and future climate scenarios. For this 

purpose, we have compiled an ensemble of nineteen downscaled climate data from NASA earth exchange global 

daily downscaled projections (NEX-GDDP). Two climate scenario projections (RCP 4.5 and RCP 8.5) are used 

to evaluate the climate change impacts for the future period up to 2099. Results indicate that climate change has 

a clear impact on both reservoirs inflow and show an increase in annual inflow into both reservoirs except in 

dry seasons. In the wet season (May-October), the inflow of Bhumibol and Sirikit reservoirs will increase by 

6.61% and 17.41%, respectively, in the far future period (2079 - 2099) under RCP 8.5. Findings from this study 

imply how to adapt for the optimize water resource management in the future. 
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1. INTRODUCTION 

The fifth Assessment Report (AR5) issued by the Intergovernmental Panel on Climate Change (IPCC) in 2013, 
described that the global average land and ocean surface temperature increased around the world by 0.85 °C 
from 1880 to 2012. The impact of climate change can lead to a change in water resources that reflected in 
temperature and precipitation. Precipitation is the most important source of water in a river, and it determines 
the amount of reservoir inflow. 

To understand the impact of climate change on reservoir inflow, the global climate models (GCMs) are common 
tools for simulating climate. The framework of the fifth phase of the Coupled Model Intercomparison Project 
(CMIP5, Taylor et al., 2012) organized under the auspices of the World Climate Research Programme’s 
(WCRP) Working Group on Coupled Modelling (WGCM), provides the largest set of climate model 
experiments to provide future projections and understand the past global climate change.  

Neural networks (NN) are techniques that can estimate the nonlinear input and output relationship of complex 
systems characterized.  In particular, NN is widely applied in reservoir inflow forecasting (Othman and Naseri, 
2011; Vijayakumar and Vennila, 2016; Tiwari et al., 2013;). According to Valipour et al. (2013), nonlinear 
autoregressive neural network (NAR) indicated the best performance over static NN, autoregressive integrated 
moving average (ARIMA) and autoregressive moving average (ARMA) with regard to reservoir inflow 
forecasts in Iran. A nonlinear autoregressive exogenous (NARX) neural network has shown excellent 
performance over NN, NAR and nonlinear input-output (NIO) for forecasting the annual precipitation. 

However, the NARX networks may not be able to cope up with the non-stationarity in input data. In order to 

relieve this problem, integration of discrete wavelet transform (DWT) techniques with the data-driven models 

has been developed for hydrological modeling. Emerging literature on DWT with NN has reported 

improvements in prediction accuracy (Kummong and Supratid, 2016). 

The main objective of this study is to study the impact of climate change on reservoirs inflow over Chao Phraya 

River Basin in Thailand.  The hybrid model of DWT and NARX was used with nineteen ensemble models form 

NASA earth exchange global daily downscaled projections (NEX-GDDP).  
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2. STUDY AREA AND DATA  

2.1 Study area  

Chao Phraya River Basin (CPRB) is located between longitude 98 - 101 °E and latitude 13.5 - 19 °N as shown 

in Fig. 1. The CPRB is the largest and most important river basin in Thailand, covering approximately 35 percent 

of the nation’s land. Figure 1 shows the Chao Phraya River system. Four main sub rivers including the Ping, 

Wang, Yom, and Nan, merge at Nakhon Sawan (indicated by red star) to form the Chao Phraya River, which 

flows down to Bangkok (indicated by red rectangle) and discharging into the Gulf of Thailand.  There are two 

large dam reservoirs exist in the basin. The Bhumibol has been operated since 1964 on the Ping River. The 

Sirikit reservoir, located on the Nan River. Both reservoirs, whose primary objectives are power generation and 

water resources.  

 

 
Figure 1. The Chao Phraya River Basin (yellow area) with Bhumibol (indicated by red circle) and Siriki reservoir (indicated 

by red triangle). The black dots mark the locations of rainfall stations. 

 

2.2 Datasets 

In this study we use nineteen statistically downscaled Global Climate Models (GCMs) from NASA Earth 

Exchange Global Daily Downscaled Projections (NEX-GDDP) (Thrasher et al., 2012). Then, the multi-model 

ensemble (MME) of monthly precipitation was downscaled to neighboring rainfall stations by using the 

distribution mapping (DM) (Teutschbein and Seibert, 2012). Two representative concentration pathways 

(RCPs) represent ‘medium’ (RCP 4.5) and ‘high’ (RCP8.5) scenarios featured by the radiative forcings of 4.5 

and 8.5 W m-2 by 2100, respectively. Detailed information of the CMIP5 models was listed in Table 1. We have 

divided the future period from 2006 to 2099 into the near future (2010 to 2039), mid future (2040 to 2069) and 

far future (2070 to 2099).  
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Table 1. The CMIP5 models used in this study. 

 

MODEL NAME 
INSITUTION 

ID 
CENTER AND COUNTRY 

ORIGINAL 

RESOLUTION 

(LAT X LON)A 

TYPEB 

     
ACCESS1-0 CSIRO-

BOM 

Commonwealth Scientific and Industrial 

Research Organization and Bureau of 

Meteorology, Australia 

1.25 × 1.875 AO 

BCC-CSM1-1 BCC Beijing Climate Center, China 

Meteorological Administration, China 

2.8125 × 2.8125 ESM 

BNU-ESM GCESS College of Global Change and Earth System 

Science, Beijing Normal University, China 

2.8 × 2.8 ESM 

CanESM2 CCCma Canadian Center for Climate Modelling and 

Analysis, Canada 

2.8 × 2.8 ESM 

CCSM4 NCAR National Center for Atmospheric Research, 

United States 

0.9375 × 1.25 AO 

CESM1-BGC NSF-DOE-

NCAR 

Community Earth System Model 

Contributors 

0.9 × 1.25 AO 

CNRM-CM5 CNRM-

CERFACS 

Centre National de Recherches 

Météorologiques (CNRM), France 

1.40625 × 

1.40625 

AO 

CSIRO-Mk3-6-0 CSIRO-

QCCE 

Commonwealth Scientific and Industrial 

Research Organization in collaboration with 

Queensland Climate Change Centre of 

Excellence 

1.850 × 1.875 AO 

GFDL-ESM2G NOAA/GF

DL 

NOAA/Geophysical Fluid Dynamics 

Laboratory, United States 

2.0 × 2.5 ESM 

GFDL-ESM2M 2.0 × 2.5 ESM 

INM-CM4 INM Institute for Numerical Mathematics 1.5 × 2.0 AO 

IPSL-CM5A-LR IPSL Institut Pierre-Simon Laplace (IPSL), France 1.875 × 3.75 ChemESM 

IPSL-CM5A-MR 1.25874 × 2.5 ChemESM 

MIROC-ESM MIROC National Institute for Environmental  

Studies, The University of Tokyo, Japan 

2.8125 × 2.8125 ChemESM 

 

MIROC-EMS-

CHEM 

MIROC 

MRI 

National Institute for Environmental  

Studies, The University of Tokyo, Japan 

Meteorological Research Institute, Japan 

2.8125 × 2.8125 AO 

MRI-CGCM3 1.125 × 1.125 ESM 

MPI-ESM-LR MPI-M Max Planck Institute for Meteorology 

(MPI), Germany 

1.875 × 1.875 ESM 

MPI-ESM-MR MPI-M 

NCC 

Max Planck Institute for Meteorology 

(MPI), Germany 

Norwegian Climate Centre, Norway 

1.875 × 1.875 AO 

NorESM1-M 1.875 × 2.5 ESM 

     
A All Models used are statistically downscaled to 0.25๐ resolution. 
B AO :coupled atmospheric-ocean model; ESM :Earth system model; ChemESM :atmospheric chemistry coupled with 

ESM models. 

3. METHODOLOGY  

3.1 Nonlinear autoregressive exogenous (NARX) neural network  

NARX network is another type of dynamic neural networks which are suitable for nonlinear dynamic systems 
and time series modeling and prediction. The defining mathematically equation for NARX network is shown in 
Eq. (1), 

𝑦(𝑡) = 𝑓(𝑦(𝑡 − 1), 𝑦(𝑡 − 2), … , 𝑦(𝑡 − 𝑑), 𝑢(𝑡 − 1), 𝑢(𝑡 − 2), … , 𝑢(𝑡 − 𝑑)) (1) 

where 𝑦(𝑡) and 𝑢(𝑡) are the input and output at time t, 𝑦(𝑡 − 1) is regressed on pervious values of the output 
at time 𝑡, d is time lag delay; The 𝑓(∙) is a nonlinear function generated by NARX network. There are two 
different modes of NARX model, open-loop and close-loop as shown in Fig. 2. The open-loop calculates the 
future value of the target signal 𝑦(𝑡) from actual values of the input signal 𝑢(𝑡) and target output 𝑦(𝑡) during 
the NARX training phase. The close-loop calculates the output that is fed back from output to input.   
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(a)  

(b)  

Figure 2. NARX network structure in open-loop (a) and closed-loop (b) with d = 4 delays. 

 

3.2 Discrete wavelet transform (DWT) 

DWT is developed based on Fourier transform. The DWT decomposes the original signal into low-frequency 
components and high-frequency components based on wavelet filtering basis functions as Eqs. (2) and (3).   

𝐿𝑙(𝑡) = ∑ 𝐿𝑙,𝑛

∀𝑛

∅𝑙,𝑛(𝑡) (2) 

𝐻𝑗(𝑡) = ∑ 𝐻𝑗,𝑛𝜓𝑗,𝑛(𝑡)

∀𝑛

 (3) 

where j = 1, 2, …, l are the levels of wavelet decomposition and n is a time interval. Function  

𝜙 and 𝜓 are called the low-pass and high-pass filtering basis function, respectively. Figure 3 represents the 

diagram of wavelet decomposition at level 3. Selection of suitable wavelet and the number of decomposition 

levels is very important in analysis of signals using the DWT.  

 

 
Figure 3. Diagram of wavelet decomposition at level 3. 
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From Fig. 3, the original signal 𝑠(𝑡) is broken down into two signals as an approximation (𝐿1) and detail (𝐻1) 
coefficients at level 1 by passing through low-pass and high-pass filters, respectively. The approximation is 
further decomposed and this process can be repeated to reach different resolution levels. The inverse discrete 
wavelet transform can be defined as Eq. (4) by reconstruction the original signal 𝑠(𝑡), using  𝐿3,  𝐻1,  𝐻2, and 
𝐻3.  

𝑠(𝑡) = 𝐻𝑙 ∑ 𝐻𝑗(𝑡)

𝑙

𝑗=1

 (4) 

 

3.3 Hybrid model of DWT and NARX (DWT-NARX) 

The proposed DWT-NARX approach is a hybrid of DWT and NARX neural network. To improve the modeling 
performance of standalone NARX, the reservoir inflows are estimated with the use of the climate change 
exogenous factors (MME monthly precipitation downscaled to near-by rainfall stations  
𝑖 = 1,2, … , 𝑁  from NEX-GDDP) which refers to 𝒑(𝑡) =  𝑝1(𝑡), 𝑝2(𝑡), … , 𝑝𝑁(𝑡) ; Figure 4 demonstrates a 
diagram of DWT-NARX for 3 level wavelet decomposition. The original time-series, 𝑦(𝑡) (which refers to 
reservoir inflow time-series) is decomposed into the coefficients of details, 𝐻1(𝑡), 𝐻2(𝑡), … , 𝐻𝑙(𝑡) (where l is 
decomposition level) and approximation, 𝐿(𝑡) sub-time series by using DWT. After decomposing, each sub-
time series of both details and approximation and climate change exogenous input 𝒑(𝑡) are imposed to an 
individual NARX using open-loop mode for model training purpose. All the output coefficients are supplied to 
inverse wavelet transform process for finally reconstructing the forecasted reservoir inflow. The procedure in 
the testing period is the same as the training period. For the future period, NARX with close-loop mode was 
used to perform the forecasted output. 

 
Figure 4. Diagram of DWT-NARX for a 3 level wavelet decomposition. 

 

4. RESULTS 

4.1 Performance of DWT-NARX for historical period 

In this study, the DWT-NARX was used to forecast the mean monthly inflow of Bhumibol and Siriki reservoirs. 
The parameters of DWT-NARX were decided by several experimental runs. The comprehensive search of 
DWT-NARX parameters was done by varying the time delay from 2 to 4. The training and test periods were 
fixed from 1985 to 2005 and 1980 to 1984, respectively. The DWT-NARX was trained by the Levenberg-
Marquard backpropagation method. Comparisons among other models (NARX, Elman’s RNN, and BPNN) in 
the historical period reveal that the DWT-NARX perform the best performance in terms of Pearson’s correlation 
coefficient (CC) and root mean square error (RMSE) as shown in Table 2. 

Table 2. The performance measures in terms of CC and RMSE. 

 

 BHUMIBOL RESERVOIR SIRIKIT RESERVOIR 

MODELS TRAINING TESTING TRAINING TESTING 

 CC RMSE CC RMSE CC RMSE CC RMSE 

         
DWT-NARX 0.9621 4.53 0.9180 9.59 0.9760 4.0309 0.9475 7.4467 

NARX 0.9566 23.46 0.6873 243.72 0.8303 107.59 0.7227 217.25 

ELMEN’S RNN 0.8159 92.39 0.7647 112.74 0.6817 185.43 0.8416 129.62 

BPNN 0.8356 83.00 -0.3429 928.90 0.6751 186.53 0.2170 989.90 
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4.2 Future inflow over Bhumibol and Siriki reservoirs 

Figure 5 shows the annual inflow to Bhumibol and Siriki reservoirs of the observed data (black dash) and future 
inflows under RCP4.5 and RCP8.5. The maximum peak inflow increase 24% (329 mcm) in September and 14% 
(178 mcm) in August for Bhumibol and Siriki reservoirs, respectively. 

(a)  

(b)  

Figure 5. Annual inflow simulation to Bhumibol (a) and Sirikit (b) reservoirs under RCP4.5 and RCP8.5. 

 

In addition, the change in the magnitude of future inflow for annual (Jan - Dec), wet (May - Oct), and dry (Feb 

- Apr) seasons was calculated comparison to the historical data. This was done only for RCP8.5 as shown in 

Fig. 6. Overall, there are agreements in increasing inflow for the annual and wet season. However, they show 

decreasing inflow in the dry season. On an annual scale, the inflow increases from 3.80% to 9.14% (Bhumibol) 

and 11.42% to 15.76% (Sirikit). In the wet season, the inflow to Bhumibol and Sirikit reservoirs will increase 

by 6.61% and 17.41%, respectively, in the far future period.  

 

(a) (b)  

Figure 6. Change in magnitude of inflow for annual, wet, and dry to Bhumibol (a) and Sirikit (b) reservoirs with different 

future periods. 

 

5. CONCLUSIONS 

In this study, we investigate a hybrid model using discrete wavelet transform (DWT) and the nonlinear 
autoregressive exogenous (NARX) neural network, namely DWT-NARX, for forecasting the monthly inflow 
to Bhumibol and Sirikit reservoirs. We have compiled the multi-model ensemble (MME) of nineteen 
downscaled climate data from NASA earth exchange global daily downscaled projections (NEX-GDDP). Two 
climate scenario projections (RCP 4.5 and RCP 8.5) are used to evaluate the climate change impacts for the 
future period up to 2099. It was found that DWT-NARX shows the best performance in terms of Pearson’s 
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correlation coefficient and root mean square error in the historical period. Then, we use DWT-NARX to forecast 
the future inflow. Overall, there are agreements in increasing inflow over the annual and wet season for both 
reservoirs. However, they show decreasing inflow in dry season. This finding will be useful to water resources 
policymakers in pondering whether the current drainage system is appropriate to meet the inflow changes in 
long-term periods.  
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