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ABSTRACT 

Low impact development (LID) practices, such as green roofs and bioretention cells, are regarded as 
environmentally-friendly alternatives to the conventional drainage infrastructures. It is essential to accurately 
predict the hydrological responses of LID practices for assessing and optimizing LID designs. However, the 
accuracy of the commonly used process-based hydrological models is sometimes affected by model 
assumptions and the availability of field measurements for calibration. Machine learning methods can 
potentially avoid these issues by directly modeling the correlation between the input (e.g., rainfall time series) 
and the response (e.g., outflow hydrograph) of a system. However, considerable uncertainties are involved 
when training machine learning models. As a case study, the correlation between rainfall time series and 
outflow rates in an LID site in the U.S. is modeled using 11 commonly used machine learning models, 
including random forest, k-nearest neighbors, and gradient boosting machine. These models are trained on 
high temporal resolution data using formal machine learning procedures, which include feature engineering, 
pre-processing, model tuning, and resampling. Different methods are used in the training procedures for 
assessing the involved uncertainties. For example, in feature engineering, the original high-resolution time 
series is transformed into different sets of features (e.g., mean and peak rainfall intensity in the past two hours) 
which are used as input to machine learning models, and different types of transformations are used to pre-
process these features. The results show that some machine learning models can achieve comparable or better 
prediction accuracy when compared to process-based models, and performance of different machine learning 
models can vary significantly. The feature engineering and the resampling procedures are found to have 
significant impacts on the quality of the trained models. Evaluating multiple machine learning models and 
using various methods in model training are crucial for assessing the uncertainties involved in machine 
learning.  
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1. INTRODUCTION 

Low impact development (LID) practices, also known as sustainable urban drainage systems or green 
infrastructures, are nature-based solutions to urban stormwater drainage problems (Fletcher et al., 2015). The 
commonly used LID practices include green roofs, bioretention cells, porous pavements, and grass swales. 
LID practices are commonly constructed throughout urban catchments and their primary function is to 
promote on-site interception, storage, infiltration, evapotranspiration, and reuse of stormwater (Ahiablame et 
al., 2012). As they mimic natural drainage processes, they are often regarded as environmentally friendly 
alternatives to conventional drainage networks. 

Various numerical models have been employed to predict the hydrological responses of LID practices under 
different rainfall conditions (Elliott and Trowsdale, 2007). Such procedure is critical to the evaluation and 
optimization of LID designs (Yang and Chui, 2018b). Commonly used numerical models are mostly process-
based, where the hydrological processes involved are characterized using physically-based or empirical 
equations. However, due to the high complexity of the hydrological processes involved, the prediction 
accuracy of process-based models can be affected by model assumptions and the knowledge of the studied 
system (Niazi et al., 2017). 

Machine learning models are able to learn the statistical correlations between the input and output of a system 
from observation data without knowing the underlying physical processes (Solomatine and Ostfeld, 2008). 
Thus, machine learning models may be applied to learn the correlation between input forcing and hydrological 
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responses of LID practices (e.g., the rainfall-runoff correlation), especially when the process-based models are 
insufficient. Multiple types of machine learning models, such as linear regressions, k-nearest neighbors, and 
support vector machines have been used in studies in many subfields of hydrology (Papacharalampous et al., 
2019). However, the application of machine learning in LID related studies has been limited. Multiple linear 
regression models were built in Li (2015) to study the correlation between rainfall depth and runoff volume in 
a catchment that implemented LID practices. Yang and Chui (2018a) adopted several machine learning 
models to predict the occurrences of overflow and flow rates of two LID sites in the U.S, where considerable 
differences in prediction accuracy were observed among different machine learning models. 

One of the key challenges facing machine learning in hydrological studies is the creation and selection of 
suitable input variables (Taormina and Chau, 2015). Since the hydrological responses of LID practices are 
governed by the antecedent meteorological conditions over an extended period of time, the high-resolution 
long-term time series of the past weather conditions should be used as input variables of these models, 
provided that LID practices’ responses at finer time scales are interested. However, many machine models 
have limited abilities in modeling high-dimensional input. Therefore, lower dimensional variables derived 
from the original high-dimensional time series are often used instead as input variables. For instance, Yang 
and Chui (2018a) computed aggregated rainfall depths over different time periods in the past based on high-
resolution rainfall time series and used them as input variables of multiple machine learning models. Lower 
dimensional variables may be derived in various ways. There are no restrictions on the input variable creation 
methods, and the usefulness of a specific method in different studies could vary significantly. However, in 
many existing studies, only one or a small number of these methods are used without explicit reasoning. 
Therefore, it is important to estimate the uncertainties associated with the input variable creation methods. 

This study aims to investigate the following questions. 

1. Are machine learning models with lower dimensional input variables derived from the high dimensional 
input variables better than those with the original input variables in terms of attaining higher prediction 
accuracy? 

2. Do different types of machine learning models respond similarly when using the same methods for 
creating lower dimensional input variables? 

3. To what extent can the input variable creation methods influence the prediction accuracy of machine 
learning models? 

2. METHODS AND MATERIALS 

2.1 Methods 

Let 𝑌" be the random variable that represents the hydrological response of an LID site at time step 𝑡, and 𝑋" be 
the time series of the antecedent meteorological and hydrological conditions recorded on and before time step 
𝑡. Then, 𝑌" may be represented as a function of 𝑋" (Eq. 1). 

𝑌" = 𝑓(𝑋") (1) 

𝑋" has elements corresponding to multiple time steps, that at time step 𝑡 − 𝑖 its element is a random vector 
𝐼",-, which is the meteorological and hydrological measurements taken at time step 𝑡 − 𝑖 (Eq. 2). 

𝑋" = [𝐼",/ 𝐼",0 𝐼",1 …] (2) 

The goal of machine learning is to find a function to approximate 𝑓 based on samples of the input-output pairs, 
{𝑦", 𝑥"}. 

The high dimensional variable, 𝑋" , is sometimes transformed to lower dimensional inputs variables (or 
variables that are expected to improve the quality of trained models) through some function 𝜙. Machine 
learning models are trained to approximate function 𝑔, which maps 𝜙(𝑋") to 𝑌", as shown in Eq. 3. 

𝑌" = 𝑔(𝜙(𝑋")) (3) 

𝜙(𝑋") are often called features, and the process of deriving these features are called feature engineering. 𝜙 are 
often defined using domain knowledge or through experiments (Kuhn and Johnson, 2019). The feature 
engineering process is highly flexible and can be subjective, which may result in large uncertainties. 

Summary statistics computed for 𝑋" or its elements are often used as lower dimensional input variables in 
current studies, such as Li (2015) and Yang and Chui (2018a). In this study, 𝐷<, the sum of the elements in 
different sets of 𝐼",-, are used as input variables. 𝐷< can be computed using Eq. 4. 
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𝐷< = = 𝐼",-
-∈?@

 (4) 

where, 𝑆< is a set of non-negative integers. 

𝑆< are defined through a stochastic process described as follow. Suppose that the hydrological response of an 
LID site is affected by the elements in set {𝐼",<|0 ≤ 𝑘 ≤ 𝑚}. Then, 𝐿 integers, 𝑛0 through 𝑛I, are randomly 
sampled from the integers between 1 and 𝑚− 1. The 𝐿 integers then cut the range between 0 and 𝑚 into 𝐿 +
1 intervals, such as [0, 𝑛0), [𝑛0, 𝑛1), and [𝑛I,𝑚]. The integers fall within the range of an interval form a set, 
𝑆<. 𝐷< can then be computed for each subset of 𝐼",- indexed by 𝑆<. 

It is reasonable to assume that the hydrological responses of LID practices are affected more by recent 
meteorological and hydrological conditions than by that from the distant past. To allow more 𝐷< to be created 
for recent events, the distribution of the 𝐿 integers should be right-skewed, i.e., there are more smaller integers 
than larger integers. In this study, 𝑝-, the probability weight that integer 𝑖 is selected is calculated as Eq. 5. 

𝑝- =
1
𝑖M (5) 

where, 𝑞 > 1. 

After the	𝐷< features have been created, machine learning models are trained to approximate the function that 
maps 𝐷< to 𝑌<. 11 commonly used machine learning models are considered in this study. They are: (1) linear 
regression (LM), (2) bagged multivariate adaptive regression splines (bagMARS), (3) partial least squares 
regression (PLS), (4) ridge regression (Ridge), (5) lasso regression (Lasso), (6) classification and regression 
trees (CART), (7) k-nearest neighbors (KNN), (8) cubist regression model (Cubist), (9) support vector 
machine with polynomial kernel (SVM), (10) random forests (RF), and (11) extreme gradient boosting 
(XGBoost). 

The model training and hyperparameter optimization are performed though k-fold cross-validation. The caret 
package in the R programming language is used for these tasks (Kuhn, 2008). The considered 
hyperparameters are the recommended or default values of caret or the packages for the aforementioned 
models in R. More details on the model training and evaluation procedures can be found in Kuhn and Johnson 
(2013) and Hastie et al. (2009). 

2.2 Materials and experiments 

The study site locates in a commercial lot in Washington Street, Geauga County, Ohio, the U.S. (Darner et al., 
2015). Multiple types of LID practices, including green roofs, bioretention basins, and porous pavements were 
constructed to treated stormwater runoff from the roof of a commercial building and a parking lot. Darner et al. 
(2015) evaluated the hydrological performance of the LID practices at this site using a statistical approach. 
Process-based models were not built in their study as the detailed design and construction configurations were 
not available. The rainfall and runoff conditions of this site were monitored by the U.S. Geological Survey 
since 2009. Rainfall depth was monitored on a 10-minute interval. Stormwater runoff from this site was 
collected by three flumes, where water levels were recorded at least every 10 minutes. The water levels were 
then converted to flow rates. The rainfall and runoff data collected between April 2011 and October 2011 
were used in this study. 

𝑌" in this study is the sum of the instantaneous flow rates measured at the three flumes on the regular 10-
minute intervals, and 𝑋"  is the rainfall time series of the past. Group-wise cross-validation was used, that 
rainfall-runoff data collected for the same event are grouped together, such that data belonging to the same 
group were used only for training or validation at each cross-validation iteration. Storms events of different 
intensities were distributed relatively evenly within each training, validation, or test set by adopting the 
stratified sampling method. 44 independent rainfall events with runoffs were identified using a 24-hour dry 
period threshold (Joo et al., 2014). 11 rainfall events were randomly selected and used as test dataset for 
evaluating the performance of fitted machine learning models. The other 33 events were used to train machine 
learning models, where five-fold cross-validation was used to optimize the hyperparameters of the models. 𝐷< 
were pre-processed before feeding to the models. The default pre-processing method applied in this study is 
centering, scaling and also the Yeo-Johnson transformation (Bishara and Hittner, 2012). 

A few experiments were conducted in this study. In the first experiment, 𝑋" was the rainfall depth time series 
measured between time steps 𝑡 − 144 and 𝑡 − 0, i.e., the past one day. 𝐿, which controlled the number of 
input variables to be created, varied from 5 to 144. Since input variables were created in a stochastic manner, 
that for each 𝐿 five sets of input variables were created randomly and used in training machine learning 
models to evaluate the associated uncertainties. 𝑞 was set to 1.05 (Eq. 5). 𝑞 controls the distribution of input 
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variables along the time axis, which may also affect the quality of trained models. The uncertainties related to 
𝑞 were not investigated in this study. Cubist and linear regression models were trained on these randomly 
created input variables. In the second experiment, 𝑋" was the rainfall time series recorded in the past two days. 
𝐿 was set to 20, and 𝑞 was set to 1.1. The 11 machine learning models listed above were trained and their 
performances were compared. The feature creation process was also repeated five times, which was same as 
the previous experiment. In the third experiment, cubist models were trained again but this time with the 
principal component analysis (PCA) added to the processing procedure. The importance of pre-processing 
procedures was then evaluated by comparing the results to that of the corresponding cubist models obtained in 
experiment 2. 

3. RESULTS AND DISCUSSIONS 

3.1 Influences of feature engineering methods on model performance metrics 

The results of experiment 1 are shown in Figure 1. The cubist regression models, in general, had higher 
prediction accuracies than the linear regression models, as indicated by the higher 𝑅1 values and lower root 
mean square error. In this experiment, the data used for each cross-validation iteration and the test set were 
fixed. Five sets of input variables were created for each 𝐿 using the stochastic method described in the method 
section. Thus, the performance variations of each set of models with the same number of input variables were 
only caused by the stochastic feature creation process, which are shown by the vertical distances within each 
bar of dots in Figure 1. The results suggest that cubist regression models are more sensitive to modifications in 
input variables than the linear regression models. Due to the considerable sensitivities of the models to the 
stochastic feature creation processes, it is hard to determine the optimal number of input variables. However, 
the models performed differently when the number of input variables changed. For instance, linear regression 
models with fewer numbers of input variables are more sensitive to the stochastic feature creation process than 
the linear models with more input variables. Nevertheless, all these models could be useful for this site, where 
process-based models are unlikely to be set up due to limited field measurements. 

 
Figure 1. The performance of cubist regression models (Cubist) and linear regression models (LM) with different 
numbers of input variables evaluated at the cross-validation iterations and on the test set. Each dot corresponds to a 
model trained on a randomly generated set of input variables. 

The performance metrics obtained at the cross-validation iterations and for the test set are expected to be 
similar. However, considerable divergences can be observed between the two sets of metrics, suggesting that 
more data were desired for more reliably assessing models’ generalization error. This result also indicates that 
the uncertainties involved the model performance evaluation were large. Nested cross-validation may be 
performed to investigate the uncertainties involved in the splitting of the training and testing sets, which are 
associated with the small amount of data. Such procedures were not adopted in this study because experiment 
1 was designed mainly to reveal the uncertainties related to the feature engineering process. 

3.2 Performance of different types of machine learning models 
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In experiment 2, the prediction accuracy of 11 types of machine learning models was evaluated, and the 
results are shown in Figure 2. Each type of model was evaluated five times on different sets of input variables 
generated using the stochastic method described above. Considerable variations in prediction accuracies can 
be observed when the input variables varied, e.g., the cubist models (Cubist) and extreme gradient boosting 
models (XGBoost). Figure 2 shows the overall rank of the models in terms of prediction accuracy with the 
better models being placed on the top of the figure. The models were ranked based on their mean prediction 
accuracies of the two metrics on the test set. Despite the noticeable variations in different realizations of the 
feature creation process, some models are found to be superior as compared to the others. For instance, the 
prediction accuracies of the classification and regression trees (CART) were significantly lower than the 
random forest models (RF) and support vector machines with polynomial kernel (SVM). However, the model 
performance may vary when different 𝐿 values are used, as shown in Figure 1. The hyperparameters of each 
model were selected from a fixed set, enriching the coverage of these sets may also affect the prediction 
accuracy of the machine learning models. Nevertheless, the performance metrics show that some of these 
models have good prediction accuracy, as the 𝑅1 > 0.70 and 𝑅𝑀𝑆𝐸 < 0.20 in both cross-validation and the 
test case. As previously discussed, the evaluation results were also affected by the uncertainties involved in 
sampling cross-validation folds and the test set. In conclusion, some machine learning models were found to 
be more useful than the other models, suggesting that more types of machine learning models should be 
evaluated during application. The multiple sources of uncertainties should be considered when trying to 
identify the optimal model(s). 

 
Figure 2. The performance of multiple types of machine learning models evaluated at the cross-validation iterations and 
on the test set. Each bar of the boxplot corresponds to models trained on multiple randomly generated sets of input 
variables. 
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3.3 Influences of preprocessing procedures 

The result of experiment 3 showed another factor that potentially affects prediction accuracies, that is the pre-
processing method. The cubist models were trained again using the same model set up procedures as 
experiment 2, except adding the PCA to the pre-processing procedure to further reduce the number of input 
variables. The resulted models (Cubist-w/-PCA) performed noticeably better than the original cubist models 
(Cubist) in experiment 2, as shown in Figure 3. This result shows that pre-processing techniques can be an 
important source of uncertainties that affects the prediction accuracy of machine learning models. Thus, this 
study recommends multiple pre-processing procedures to be evaluated for deriving higher quality models. 

 
Figure 3. The performance of cubist models evaluated at the cross-validation iterations and on the test set. Each bar of the 
boxplot corresponds to models trained with different pre-processing procedures. Cubist-w/-PCA corresponds to cubist 
models trained with the PCA added to the pre-processing procedure, and Cubist corresponds to the cubist models 
obtained in experiment 2. 

4. CONCLUSIONS 

This research shows that machine learning methods can be valuable tools to predict the hydrological responses 
of LID practices. The models can be applied in cases when the information for setting up process-based 
models is not available. In LID-related studies, the dimension of input variables can be high. Feature 
engineering methods can effectively reduce the dimension of the input variables and can potentially improve 
the prediction accuracy of machine learning models.  

The feature engineering processes are found to have significant influences on the prediction accuracy of the 
trained models. This research shows that different machine models can respond differently when the input 
variable change. However, it would be difficult to predict the consequence of using a specific feature 
engineering method without training and evaluating the models. This research also shows that pre-processing 
methods, such as applying the PCA to the input variables, can be useful for improving the quality of the 
models. As it is difficult to predict the effectiveness of different types of machine learning models, feature 
engineering process, and pre-processing methods in attaining higher prediction accuracy, future studies should 
investigate as many combinations of these modeling configurations as possible in order to identify higher 
quality models. Other types of machine learning models that relied less on feature engineering, such as deep 
learning models, may be applied in future LID-related studies. 

This research shows that while it is relatively easy to set up machine learning models that deliver reasonably 
good prediction accuracy, it can be challenging to establish the optimal model (or models) due to the large 
uncertainties related to feature engineering, pre-processing, and hyperparameter optimization. Therefore, this 
research calls for further investigations on methods for automatically optimizing the structure of machine 
learning models, especially under the condition of having a limited amount of data. 
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