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ABSTRACT 

With the optimization and selection of climate models, hydrological model, as well as an uncertainty analysis 

via the bayesian model averaging approach, an ensemble projection framework was established to significantly 

improve the reliability of runoff in the future. Runoff in 2050 and 2070 was projected with data from the Yellow 

River Basin, China. The runoff and its 90% confidence intervals at the six main stations of the Yellow River 

Basin were obtained. The runoff in 2050 and 2070 in the upper and middle reaches of the Yellow River is found 

to decrease by 4.1 billion m3 and 2.7 billion m3, respectively, compared with the reference period. The water 

supply–demand situation in the whole Yellow River Basin is not optimistic. The ensemble projection method 

in this study is a general calculation process, which can be used widely in hydrometeorological ensemble 

forecasting, and provides a basis for water resource management planning. 
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1. INTRODUCTION 

Runoff projections under climate change and human activities are crucial for the future management of 

water supplies; undertaking these assessments on a large-scale basin is a challenge for water resources engineers 

and planners. The current suite of global climate models (GCMs)greatly assist the process. Projecting the runoff 

in future mainly relies on scenario analyses based on results generated by hydrological model driven by various 

climate models (Arnell, 1992; Arnell and Reynard, 1996; Ragab and Prudhomme, 2002; Thomson et al. 2005; 

Abbaspour et al., 2009; Abouabdillah et al., 2010; Montenegro and Ragab, 2010; Piao et al. 2010; Zhang et al., 

2012). However, the projected impacts of climate change on runoff are associated with large uncertainties: the 

results of runoff under different scenarios are quite different (Jonas and Ken, 2015). This will be further 

confusion in river basin management and planning. How to reduce the uncertainties of climate models to 

generate relatively reliable projections that meet the requirements of government planning has always been a 

difficult scientific problem.  

In view of the uncertainties associated with projections generated by multiple models, numerous methods 

for uncertainty analysis have been developed. In recent years, Bayesian model averaging (BMA) has been 

applied in comprehensive hydrological projections (Duan et al., 2007; Zhang et al., 2009; Dong et al., 2013a). 

BMA can not only be used to obtain the uncertainties of a combination of multiple models (Dong et al., 2013b). 

 To project the runoff of a large-scale basin under climate change and human activity, this study aimed to 

establish an ensemble projection method, which consists of climate and hydrological models; uncertainty 

analysis is also a focal point. BMA approach was applied for large-scale basins. The method is demonstrated 

using the Yellow River Basin, which is a typical large basin in China. This paper is structured as follows. Section 

2 describes the study area and the data. Section 3 proposes the ensemble projection method. Section 4 discusses 

the results. Lastly, Section 5 concludes the paper. 

2. STUDY AREA AND DATA  

 The Yellow River is the world’s fifth longest river. Its main stream is 5,464 km long in total, with a drainage 

area of 795,000 km2 (Figure 1). The upper and middle reaches of the Yellow River Basin account for 97% of 

the total drainage area, whereas the lower reach, which is several hundreds of kilometers long and has a riverbed 
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above the level of the riverbanks, has a drainage area that only comprises 3% of the total basin. The Yellow 

River Basin is the most sensitive region of global climate change in China. In the past two decades, as a result 

of climate change and human activity, there has been a sharp decrease in the runoff and sediment discharge of 

the Yellow River Basin (Xiao et al., 2009). Projecting the runoff of the Yellow River Basin under climate change 

and human activity is a scientific issue that urgently needs to be addressed. Based on GCMs, it is generally 

believed that the runoff of the Yellow River Basin will decrease significantly in the future (Xu et al., 2007; Xu 

et al., 2009; Hao et al., 2006; Li et al., 2011; Zhang et al., 2012). However, these studies are still based on a 

variety of scenarios and do not give the exact range of runoff change, and there is a lack of in-depth analysis of 

the uncertainty. 

 The daily observed data from 1956 to 2017 at six control stations on the main stream of the Yellow River, 

namely, from the upper to the lower reaches, Tangnaihai, Lanzhou, Toudaoguai, Longman, Tongguan, and 

Sanmenxia (Figure 1). The Sanmenxia station control the upper and middle reaches of the Yellow River, where 

the runoff accounts for 90% of the total runoff of the entire basin. The region upstream of the Lanzhou 

hydrological station is the source region of the Yellow River, where the runoff accounts for 64% of the total 

runoff of the basin. The daily meteorological observation data from 1956 to 2017 were supplied by the National 

Climate Center of China. 

 
Figure 1. The Yellow River Basin (TNH-Tangnaihai, LZ-Lanzhou, TDG-Toudaoguai, LM-Longmen, TG-Tongguan, 

SMX-Sanmenxia station)  

 

GCMs have been extensively used to simulate future climate scenarios and evaluate the hydrological, 

agricultural, and environmental effects of climate change. Zhou and Han (2018) evaluated the simulation 

capacity of 18 GCMs for temperature and precipitation in the Yellow River Basin, and six climate sequences 

for each of the two future periods were obtained based on the quantile mapping method (Cannon et al., 2015) 

and RegCM4(Gao et al., 2016; Gao et al., 2017). 

3. METHODOLOGY 

An ensemble projection framework was designed to project the future runoff of large basins (Figure 2). 

The first step is to calculate six future runoff series with a distributed hydrological model based on climate 

boundaries consisting of six climate sequences (Table 1) while considering future land surface and water usage. 

The second step is to use a global BMA approach to produce a weighted average ensemble projection based on 

multiple runoff results. 
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Figure 2 Ensemble projection process. 

For the second step, the BMA ensemble projection requires the division of the period into calibration, 

validation, and projection periods. The weights of each runoff sequence are determined in the calibration period. 

Then, the ensemble simulation accuracy is evaluated in the validation period. On this basis, the BMA parameters 

(wk and 𝜎𝑘
2) are used to project runoff in the projection period (Figure 3). The relative errors are used for the 

accuracy analysis by comparing the ensemble simulation with the observed data. 

BMA is a statistical approach designed to infer a prediction by weighted averaging over many different 

competing models (Ajami et al., 2006). This approach can combine different models and be used to reduce the 

uncertainties of models. Let Q be the projected value, D =[X, Y] be the input data (X and Y are the simulated 

runoff data and observed runoff data, respectively), and f =[f1, f2,…, fk] be projected runoff values generated by 

a K number of models. Thus, the BMA probability project can be expressed as follows: 

𝑝(𝑄|𝐷) = ∑ 𝑝(𝑓𝑘|𝐷) ∙ 𝑝𝑘(𝑄|𝑓𝑘 , 𝐷)
𝐾
𝑘=1                                                (1) 

In Eq (1), p(fk|D) is the posterior probability of the projection fk provided by the kth model for the given 

input data D. p(fk|D) reflects the degree of match between fk and the observed runoff Y. In fact, p(fk|D) is the 

weight wk of model k in BMA. The higher the projection accuracy of a model is, the greater the weight assigned 

to it is. All the weights are positive values with a total sum of 1. Additionally, in Equation (1), p(Q|fk, D) is the 

conditional probability density function of the projected Q under the given model project fk and data D 

conditions. 

The average projected value obtained by BMA is a weighted average of projected values generated by 

multiple models. If the projected values generated by individual models and the observed runoff follow a normal 

distribution, then the BMA average projected value is as follows: 

𝐸[𝑄|𝐷] = ∑ 𝑝(𝑓𝑘|𝐷) ∙ 𝐸[𝑔(𝑄|𝑓𝑘 , 𝜎𝑘
2)]𝐾

𝑘=1 = ∑ 𝑤𝑘𝑓𝑘
𝐾
𝑘=1                              (2) 

The expectation maximization (EM) algorithm is further used to calculate the weight wk of each model and its 

project error 𝜎𝑘
2. 

 

4. Result  

4.1 Hydrological model calibration and validation 

The WEP-L model (Jia et al., 2006) was used to simulate runoff in the ensemble projection process. Based 

on DEM, soil, and land-use distribution data, the Yellow River Basin was divided into 8,485 subbasins and 

38,720 computational units. Model calibration and validation were performed with the 6 main stations in Figure 

5. For both the calibration and validation periods, the relative error and Nash–Sutcliffe efficiency coefficient of 

the model were found to be within 5% and greater than 0.6, respectively (Table 1). Thus, the distributed 

hydrological model established based on the WEP-L model for the Yellow River Basin is capable of depicting 

the water cycle process in this typical region and provides a basis for analyzing runoff evolution and the effects 

of climate change on runoff in this region. 
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Table 1 Runoff calibration and validation 

Station 

Calibration period 

(1956–2000) 

Validation period 

(2001–2017) 

NSE 
Relative error 

(%) 
NSE 

Relative error 

(%) 

Tangnaihai 0.787 -4.7 0.756 -4.1 

Lanzhou 0.787 0 0.745 -2.1 

Toudaoguai 0.646 7.1 0.598 6.9 

Longmen 0.603 7.3 0.672 7.9 

Tongguan 0.653 8.6 0.621 8.5 

Sanmenxia 0.643 8.1 0.612 9.3 

 

4.2 Ensemble projection of future runoff 

Based on the BMA parameters, runoff at each main station (i.e., Tangnaihai, Lanzhou, Toudaoguai, 

Longmen, Tongguan, and Sanmenxia) was projected for the 2050 and 2070 periods (Figure 3). For the two 

future periods, the ensemble projection method was capable of providing monthly discharge for each section 

and the 90% confidence interval of the monthly discharge. In the two future periods, the 90% confidence 

intervals of the monthly runoff at the hydrological stations in the upper reaches of the Yellow River Basin were 

significantly narrower than those at other hydrological stations. This suggests that under the ensemble projection 

framework, the hydrological model produces better simulations for the upper reaches of the Yellow River Basin. 

Additionally, it suggests that it is more difficult to simulate the middle and lower reaches of the Yellow River 

Basin as a result of land surface conditions and human activity, and there are greater uncertainties in the 

simulation results for the middle and lower reaches of the Yellow River Basin. 

Table 2 summarizes the annual average runoff at the main stations and their 90% confidence intervals. In 

the 2050 period, the annual average runoff values for the six main sections (i.e., Tangnaihai, Lanzhou, 

Toudaoguai, Longmen, Tongguan, and Sanmenxia) are 17.7, 28.5, 27.9, 31.1, 37.9, and 38.2 billion m3, 

respectively. In the 2070 period, the annual average runoff values for the six main sections are 17.2, 27.8, 27.3, 

31.2, 39.2, and 39.5 billion m3. The 90% confidence interval of the annual average runoff at the Tangnaihai 

station in the source region of the Yellow River is the narrowest. The 90% confidence interval of the station 

close to the lower reaches is the widest, reflecting the greater uncertainty in the projected results.  

Table 2 Ensemble projection of annual average runoff (Billion m3) 

Section Reference period 

2050 (2041–2060) 2070 (2061–2080) 

Runoff 
90% confidence 

interval 
Runoff 

90% confidence 

interval 

Tangnaihai 20.1 17.7 [13.3, 20.8] 17.2 [12.9, 21.2] 

Lanzhou 31.7 28.5 [22.3, 33.1] 27.8 [21.7, 33.4] 

Toudaoguai 30.4 27.9 [21.5, 32.4] 27.3 [21.2, 32.7] 

Longmen 34.1 31.1 [23.6, 35.8] 31.2 [23.8, 38.2] 

Tongguan 41.9 37.9 [27.5, 45.5] 39.2 [26.7, 48.9] 

Sanmenxia 42.2 38.2 [27.7, 45.9] 39.5 [26.8, 49.3] 
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a Ensemble projection of discharge (m3/s) in the 2050 period. 
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b Ensemble projection of discharge (m3/s) in the 2070 period. 

Figure 3 Ensemble projection of discharge in 2050 (a) and 2070 (b) periods (m3/s). 
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5. CONCLUSIONS 

Based on GCMs, the BMA algorithm, and the WEP-L distributed hydrological model, an ensemble 

hydrological projection method was established. Additionally, the main conclusions derived from this study are 

summarized as follows: 

(1) By combining multiple GCMs and uncertainty analysis, a general ensemble projection framework for 

future hydrological conditions was established. With several technical steps, such as the optimization and 

selection of climate models, as well as an uncertainty analysis using the BMA approach, the framework was 

found to significantly improve the reliability of ensemble projections. 

(2) The runoff at the six main stations (i.e., Tangnaihai, Lanzhou, Toudaoguai, Longmen, Tongguan, and 

Sanmenxia) of the Yellow River Basin is expected to be 17.7, 28.5, 27.9, 31.1, 37.9, and 38.2 billion m3 in the 

2050 period and 17.2, 27.8, 27.3, 31.2, 39.2, and 39.5 billion m3 in the 2070 period, respectively, in the 2070 

period. Table 4 summarizes the corresponding 90% confidence intervals. The runoff in the 2050 and 2070 

periods in the upper and middle reaches of the Yellow River Basin decreases by 4.0 billion m3 and 2.7 billion 

m3, respectively, compared with the reference period. 

(3) The 90% confidence intervals of the monthly runoff at the stations in the upper reaches of the Yellow 

River Basin in the two future periods are significantly narrower than those at the other hydrological stations 

(Figure 3). This result suggests that under the ensemble projection framework, the hydrological model provides 

better simulations for the upper reaches of the Yellow River Basin. As a result of land surface conditions and 

human activity, it is more difficult to simulate the middle and lower reaches of the Yellow River Basin, and the 

results have more uncertainty. It is critical to improve the hydrological model in specific areas to increase its 

projection reliability. 
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