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ABSTRACT 

Automatic and adaptive pumping operations on drainage management in a lowland have been required to reduce 

run costs on efficient, regular pumping and promote effective water-supply for paddy fields and proper controls 

for flood events. To satisfy these requirements in controlling the entire water volume in the lowland, an effective 

and efficient, real-time prediction model is required. The model is usually run using observed data from the 

fields. For a sustainable operation with reduction of run cost and manpower, this study focused on investigating 

minimum observed instruments based on locations and data items to maintain accurate model predictions. We 

employed the long short-term memory (LSTM) model as a data-driven model, which can predict long-term, 

time-series data accurately. The LSTM model that predicts water level and discharge was implemented to a 

mid-size agricultural lowland with a complicated drainage system. In the area, several stations for intake (four 

irrigation pumping stations) and for drainage (five drainage pumping stations), numerous canals and a regulating 

pond exist. Continuous, long-term observed data are available. Water level predictions were conducted with a 

variety of cases with different inputs based on the number of stations and the combinations of data items (e.g., 

water level & rainfall, and water level & drain discharge) during April to August (irrigation season). The error 

evaluation was conducted by K-fold cross-validation. The results showed that the information of water level as 

input data was greatly crucial for accurate outputs and that four irrigation pumping stations and a main drainage 

pumping station were proper to minimize observed locations during irrigation season. 
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1. INTRODUCTION 

Drainage pumping has an important role to control water volume in a lowland to dry out wetlands. When pumps 

are run or stopped based on some regional rules of drainage management, some drainage pumping stations still 

employ human-judgment operation, some automatically operate the pumps using real-time systems that monitor 

water level in a regulating pond near a pumping station, and the others perform mixed operation based on 

human-based and automated judgments. It is necessary to introduce an effective and efficient, real-time 

monitoring and forecasting system to support various pumping operations. In general, monitoring systems 

require observational instruments coupled with information communication technology tools, key locations for 

monitoring, and crucial variables of data items. These systems are extremely expensive to maintain continuous 

operations. If minimum locations (e.g., pumping stations and canals) and minimum variables of data items (e.g., 

water level, rainfall, and pump discharge) for monitoring are determined, pumping operations by managers and 

even automatic systems would become more effective and efficient. Moreover, the operational and maintenance 

fees would be reduced. It is necessary to investigate what an effective and efficient monitoring system is.  

To provide an appropriate answer for this kind of question, physical-based models such as conceptional 

hydraulic models and hydrological models usually can be used to simulate the entire water volume of a lowland 

and water level in a pond. However, those models require hard work such as creation of calculational meshes 

and determination of geological and hydrological parameters in the preprocessing. Instead, we focus on using a 

deep neural network (DNN) model to investigate what effective and efficient monitoring systems are required 
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in an actual lowland. This is because the DNN model is one of the data-driven models and is able to run only 

using past data without any setups of physical features in the lowland. DNN models have been applied to riverine 

flood simulations (e.g., Hitokoto et al., 2016). These models are created based on multilayer perceptron (MLP), 

one of the conventional neural networks originally proposed by McCulloch and Pitts (1943). Different types of 

DNN models has been recently utilized to predict water level and discharge in riverine flood events. For example, 

a long short-term memory (LSTM) model originally proposed by Hochreiter and Schmidhuber (1997) were 

applied to regional flood events using the observed datasets (Yamada et al., 2018; Hu et al., 2018; Le et al., 

2019). As the results of these studies, the LSTM model is greatly beneficial to predict time-series data based on 

the evaluation of prediction accuracy. These studies were conducted in specific rivers over local watersheds. 

Our study needs to predict time-series water levels in a pond that has a role of adjusting water volume in a 

lowland. Kimura et al. (2019) already developed MLP and LSTM models to predict water level and discharge 

for drainage management in small- to middle-size lowlands. They also revealed that LSTM model predicted 

more accurate water levels and discharges than those by the MLP model. For example, using the observed data, 

including several severe flood events, for approximately eight years in a middle-size lowland, the predicted 

water level by LSTM model was more accurate by 2–6% than that by the MLP model up to three-hour lead 

time. As our target study site is used primarily for paddy fields, irrigation season (spring to summer) is crucial 

to control water volume for the fields. Therefore, it is necessary to provide the accurate information of water 

level in the pond. Although Kimura et al. (submitted manuscript, 2020) have already investigated what kind of 

input datasets for the LSTM model provide more accurate performance for continues, long-term predictions, 

they did not conduct the model validation during specific periods such as irrigation season and flood season. 

However, a target period is the irrigation season in this study focused. In addition, it is necessary to investigate 

what function of a monitoring system is appropriate through effective and efficient operations of pumps. 

The purposes of this study are first to verify a better accuracy of the LSTM model rather than that of the MLP 

model during the irrigation season, and secondly to perform sensitivity tests of LSTM model for minimizing 

monitoring points and data items over a lowland, and finally to propose an appropriate monitoring system based 

on accuracy evaluation of the model. 

2. METHOD 

2.1 Study site 

The target lowland is located in a northern portion of Central Japan, close to a coast line on the north side and 

enclosed by three rivers on the other sides. The lowland has an area of approximately 100 km2 and a small pond 

(approximately 1.5 km2) in the northwest part that is used to control the entire water volume of the area (Figure 

1). The lowland has main five drainage pumping stations and main four irrigation pumping stations (Table 1). 

The largest drainage pumping station (D2) is directly connected to the pond with a wide canal without slope 

and always works to maintain water level in the pond. The other drainage pumping stations (D2 –D5) potentially 

work from April to October during heavy rainfall events. The irrigation pumping stations (I1–I4) work from 

May to August for rice-paddy cultivation. Each pumping station provides the data, including water level, rainfall, 

and discharge that the pumps drain or draw. 

2.2 Conventional neural network 

A MLP model, one of the conventional neural network models, consists of three layers—input layer, hidden 
layer, and output layer—and makes network with nodes as a brain model. The hidden layer can be extended to 
several layers. Each node has an activation function that filters input values 𝑥 with weighted coefficients 𝑤 into 
an output value 𝑌. If a layer has 𝑛 nodes, a certain node 𝑘 in a subsequent layer receives 𝑛 input values. These 
inputs weighted by coefficients are integrated and added by a bias 𝑏𝑘. The activation function 𝐹(∗) outputs 𝑌𝑘 
from a node. These variables are defined in the following equations. 

𝑦𝑘 = ∑ 𝑤𝑗,𝑘𝑥𝑗
𝑛
𝑗=1 + 𝑏𝑘, (1) 

𝑌𝑘 = 𝐹(𝑦𝑘), (2) 

The network structure of the MLP model and the inner structure of the node are shown in Figure 2 when two 

variables (A and B) are used as input data. The variables are predicted at the forward time step (𝑡 + 1) in the 

output layer. 

2.3 Long short-term memory (LSTM) model 

A LSTM model is a type of RNN architecture and is proper to train the data that have long-term trends. The 
LSTM model was created to solve problems in vanishing and exploding gradients by introducing a memory cell. 
For the LSTM inner structure (Fig. 2a), input data 𝑥𝑡 at present time t are mixed with output data ℎ𝑡−1 at the 
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previous time step 𝑡 − 1. The input data move to three gates: forget, input, and output. A function of the forget 
gate 𝑓𝑡 that removes some information from the memory cell is defined as the following equation. 

𝑓𝑡 = 𝜎(𝑤𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (3) 

where 𝑤𝑓[ℎ𝑡−1, 𝑥𝑡] is a matrix operation related to 𝑥𝑡 and ℎ𝑡−1; 𝑏𝑓 is a bias; and σ is a sigmoid as an activation 

function. The input gate mixes two types of information sources, obtained from feature quantities of the input 

data with two different activation functions. The two sources are expressed in Equations (2) and (3). The input 

gate adds the mixed information to the memory cell. 

𝑖𝑡 = 𝜎(𝑤𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖), (4) 

𝑧𝑡 = tanh(𝑤𝑧[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑧), (5) 

where tanh is a hyperbolic tangent as an activation function, and 𝑏𝑖 and 𝑏𝑧 are biases. The variables 𝑓𝑡, 𝑖𝑡, and 𝑧𝑡 

are combined into the following equation with the state of a past trend at 𝑡 − 1 (𝐶𝑡−1) that a memory cell holds. 

𝐶𝑡 = 𝑓𝑡 ⊗ 𝐶𝑡−1 ⊕ 𝑖𝑡 ⊗ 𝑧𝑡, (6) 

where ⊗ is multiplication; and ⊕ is addition. The output gate function 𝑜𝑡 that still involves the original feature 

quantities of the input data is defined in the following equation. 

𝑜𝑡 = 𝜎(𝑤𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜), (7) 

where  𝑏𝑜 is a bias. Finally, the 𝐶𝑡 from the memory cell is multiplied by 𝑜𝑡 and updates the output (ℎ𝑡) 

ℎ𝑡 = 𝑜𝑡 ⊗ tanh(𝐶𝑡)． (8) 

A network structure of the LSTM model has three layers: input, hidden, and output. The hidden layer can be 

extended to several layers. Figure 3 shows the network and inner structures of the LSTM model. 

2.4 Simulation designs 

This study focused on the temporal prediction of water level at a pond connected to the main drainage pumping 

station (D1) through a wide canal. The water level at D1 was set up as a model output because there is no slope 

between the pond and D1 in water level. The data at drainage- and irrigation-pumping stations were used for 

the sensitivity tests as model input. Each station collected the data that consist of major three variables: rainfall, 

water level, and pump discharge (hereafter “discharge”). The run of the LSTM model with the input data at all 

stations and three variables at each station was defined as a basic case (Case 1). For a model comparison between 

LSTM and conventional neural network models, the MLP model was run with the same calculation condition 

in Case 1. This is defined as Case 0. The role of the irrigation pumping stations (I1–I4) for predicted water level 

in D1 should be clarified because a prediction period is the irrigation season. Cases 2–9 were performed without 

the drainage pumping stations except for D1. Case 2 has I1–I4 and D1 to clarify the effect of the irrigation 

pumping stations on the predicted water level. This is because D2–D5 are used primarily for heavy rainfall 

events. In reality, only a few heavy rainfall events usually occur for a year. Cases 3–5 tested a combination of 

two variables like “water level and rainfall” or “water level and discharge” as input data. Cases 6–8 were tested 

to select only one variable. Case 9 used only D1’s water level as input to test the effect of the water level of D1 

on the prediction. Case 10 was tested only using water levels of the irrigation pumping stations. One run by the 

MLP model was conducted and the LSTM model ran the nice cases listed in Table 2. 

2.5 Data acquisition, model validation, and data flow 

The observed data at all pumping stations were obtained at the target lowland from 2010 to 2017. The data were 

selected only from April to August for the irrigation season in paddy fields. Some data from a drainage pumping 

station were collected and preserved by the Ministry of Land, Infrastructure, Transport, and Tourism in Japan 

(MLIT Japan). The other data were obtained by a local social association for land development, in cooperation 

with a local government and the Ministry of Agriculture, Forestry and Fisheries of Japan (MAFF Japan). 

Missing data were interpolated. These data were used to train the LSTM model and to evaluate the errors of 

model predictions. K-fold cross-validation (Geisser, 1993) was utilized for the validation comparison. The 

number K was set to eight, and the observed data were separated into eight groups. Seven groups were used for 

training the model and one group was used for comparison with the model prediction. The one group for model 

prediction was exchanged with the other groups in order. A quantitative error between observation and 

prediction was defined by root mean square error (RMSE). A mean RMSE (M-RMSE) that is averaged over the 

RMSEs from eight-time tests, each of whose was conducted in each group, was adopted for a comparison among 
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all cases listed in Table 2. The second group (G2) of the eight groups was also considered for RMSE evaluation 

because it involves the highest flood peak during the observed period. 

Observed data were obtained from the field measurements in the first step. Parts of the observed data were used 

for the cross-validation in a learning process in the second step. In the third step, the remainder of the observed 

data were used for prediction. The data flow for the procedures in learning and prediction by the LSTM model 

is illustrated in Figure 4. The program for the LSTM model was created using Python (version 3.6.4, 

www.python.org) incorporated with the Python deep learning libraries in Keras (keras.io/ja) on a Windows-OS 

PC with an Intel Core i7-4770K CPU at 3.50 GHz. The setups of several hyperparameters, such as batch size 

and epoch number, and of the functions such as activation function and error evaluation, are detailed in Table 

3. These hyperparameters were calibrated in the former study (Kimura et al. submitted manuscript, 2020).  

 

 
Figure 1. Map of a field site, showing a pond, drainage pumping stations (D1–D5), irrigation pumping stations (I1–I4), and 

major drainage and irrigation canals. 

 

 

 
Figure 2. Network and node structures in the MLP model. (a) a network structure is an example of time-series A and B 

variables with time steps (t-2 to t+1). (b) node k has inputs (j-1 to j+1) with weighted coefficients, sums up them, passes 

through the activation function, and makes the output. 
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Figure 3. Network and inner structures of a LSTM model. (a) network has two layers in the hidden layer with two variables 

(A and B) in time-series data. (b) inner structure has three gates with a memory function (Cell) that hold past trends.  

 

 

 
Figure 4. Data flow for training and prediction by MLP and LSTM models. 

 

 

Table 1. Characteristics of the major pumping stations (I1–I4 for irrigation and D1–D5 for drainage). 

 I1 I2 I3 I4 D1 D2 D3 D4 D5 

The number of pumps 3 2 2 2 4 2 3 3 3 

Maximum flow rate (m3/s) 5.9 4.2 8.4 2.2 60.0 40.0 6.8 12.8 16.2 

 

 

Table 2. Simulation cases for sensitivity tests 

 Data type Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case10 

 Water level ○ ○ ○ ○  ○    ○ 

I1 Rainfall ○ ○ ○  ○  ○    

 Discharge ○ ○  ○ ○   ○   

 Water level ○ ○ ○ ○  ○    ○ 

I2 Rainfall ○ ○ ○  ○  ○    

 Discharge ○ ○  ○ ○   ○   

 Water level ○ ○ ○ ○  ○    ○ 

I3 Rainfall ○ ○ ○  ○  ○    

 Discharge ○ ○  ○ ○   ○   

 Water level ○ ○ ○ ○  ○    ○ 

I4 Rainfall ○ ○ ○  ○  ○    

 Discharge ○ ○  ○ ○   ○   
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 Water level ○ ○ ○ ○  ○   ○  

D1 Rainfall ○ ○ ○  ○  ○    

 Discharge ○ ○  ○ ○   ○   

 Water level ○          

D2 Rainfall ○          

 Discharge ○          

 Water level ○          

D3 Rainfall ○          

 Discharge ○          

 Water level ○          

D4 Rainfall ○          

 Discharge ○          

 Water level ○          

D5 Rainfall ○          

 Discharge ○          

 

Table 3. Setups of hyperparameters and functions for MLP and LSTM models 

Hyperparameters/functions Values/function Remarks 

Number of hidden layers 2  

Number of vector dimensions (or 

nodes) in inner parameters 
20 

The number of nodes in hidden layer 

(Figure 2a) or the vector of 𝐶𝑡 (Figure 3b) 

Past and present time in input −6 to 0  Time interval = h  

Lead time in output 1, 3, 6 Time unit = h 

Batch size 100  

Number of epochs 100  

Learning rate 0.01 For SGD implementation 

Dropout rate 0.0  

Reproducibility None  

Optimizer Stochastic gradient descent (SGD)  

Activation function Sigmoid or hyperbolic tangent 
Used in nodes or inner structures of the 

LSTM model 

Loss function in training 

processes 

Mean square error 

= 
1

𝑁1
∑ (𝑉𝑐𝑗 − 𝑉𝑜𝑗)

2𝑁1
𝑗=1   

ci=model prediction, oi= observed data, 

N1=the number of data 

Error evaluation in cross 

validation 

Root mean square error (RMSE) 

= √
1

𝑁1
∑ (𝑉𝑐𝑗 − 𝑉𝑜𝑗)

2𝑁1
𝑗=1   

Same as above 

Error evaluation Relative error (RE) =
1

𝑁1
∑

|𝑉𝑐𝑗−𝑉𝑜𝑗|

𝑉𝑜𝑗
 𝑁1

𝑗=1   Same as above 

 

3. RESULTS & DISCUSSION 

Water levels and rainfalls collected in the field from 2010 to 2017 as inputs of the DNNs are shown in Figure 5 

during irrigation season (April to August) in each year (i.e., group). Severe flood events (>25 mm/h for rainfall) 

seldom occurred for these periods. Ten severe rainfall events with over 25 mm/h occurred during the irrigation 

period of the eight years. In Figure 5b, G2 had the largest flood event (approximately 40 mm/h for the rainfall 

intensity). Note that for the DNN simulations, missing data such as water level and rainfall were set up to 

constant values in the group 6 (Figure 5f). 

Figure 6 shows predicted water levels in G2 in lead times 1, 3, and 6 h of Cases 0 and 1, compared with the 

observed data (water levels and rainfalls). The LSTM model performed accurate predictions of water levels in 

1 h- and 3 h-lead times even during the flood event as well as a normal event in two small panels. However, the 

precited water level in 6 h lead time was worse because each peak cannot be captured potentially due to time 

lag of 6 h. For quantitative evaluation, the predicted water levels in G2 simulated by the LSTM model (Case 1) 

provided reasonable RMSEs of 0.033–0.067 m in 1–6 h lead times corresponding to 3.0–6.0% of maximum gap 

of observed water level. These RMSEs were slightly better than those by Case 0 (MLP model) with 8–35% 

improvements. In addition, the relative errors (REs) in G2 in the lead times were 8.1–15.3%. From the cross 

validation, M-RMSEs averaged over all groups were 0.027–0.051 m in the lead times. These values were 
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slightly better than those of G2 because G2 involves the highest peak of water level, which is hard to be 

accurately predicted due to no similar peaks in a training process among the other groups. The REs for all groups 

in Case 1 were 5.5–8.2% in the lead times, which indicates that the predictions by the LSTM model were 

reasonable over the all groups. The previous study (Kimura et al. 2019) reported that the MLP model with one 

hidden layer provided RE = 10.8% up to 3 h-lead time for 8-year simulation. The model accuracy in this study 

was slightly better than the of the previous one because of using the LSTM model as an advanced model.  

For the model sensitivity tests among the observed locations and the variables of data items, Cases 2–10 were 

run with the same computational condition of Case 1 except for input data. The RMSEs in lead times from the 

Case-1 run were utilized as the base values when compared with the other cases. A difference from the Case-1 

error was defined as the following equation to evaluate relative comparisons of M-RMSE and G2-RMSE among 

Cases 2–10 when those of Case1 are one. 

Difference = 100 × (RMSE𝑂𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒 − RMSE𝐶𝑎𝑠𝑒1) RMSE𝐶𝑎𝑠𝑒1⁄  (9) 

where RMSE is replaced by M-RMSE or G2-RMSE. Figure 7 indicates the differences among Cases 2–10 and 

adds the difference of Case 0 as a reference. The differences of Case 2 were slightly reduced by 1.3–3.3% from 

those of Case 1 in M-RMSE and were improved by 9.3% and 1.3% for 1 h- and 3 h-lead times in G2-RMSE 

but almost equivalent for 6 h-lead time. The differences in Cases 3 and 4 with water level as input data were 

slightly worse than those of Case 2. This suggests that three variables at all irrigation pumping stations and the 

main drainage pumping station are enough to perform accurate predictions. Cases 5, 7, and 8 that did not include 

water level as input data in I1–I4 and D1 provide larger differences by more than 10% of Case 1 in both error 

evaluations of RMSEs, indicating that worse predictions of water level were provided. Moreover, Case 10 

without the water level at D1 as the input also predicted water level poorly by more than 8%. As a result, water 

level was a key variable as input. The differences in 6 h-lead time among Cases 5, 7, 8, and 10 were reduced 

from those of the other lead times. This result indicates that even Case 1 must have simulated poorly in 6 h-lead 

time. Therefore, the differences between those four cases and Case1 were relatively small in a longer lead time. 

The error evaluation with RMSEs might not be proper to measure the accuracy of a model that simulate zigzag 

shapes of water level produced by repeating on-/off-pumping operation like this study. We assumed that RMSEs 

for gradients of water level per time step could measure the zigzag shape. The RMSEs were separated with three 

patterns based on the same, opposite, and neutral (zero) directions across time axis of the gradients between 

observed and predicted data. That is, if two gradients by observed and predicted water levels are positive 

together or negative, the gradients have the same direction. On the other hand, the two gradients are negative 

and positive and vice versa, it is defined as he opposite direction. The neutral direction means that at least one 

gradient is zero. The ratios to the occurrences for the same, opposite, and neutral directions of the gradients 

were 1, approximately 1, and approximately 0.5 respectively if the number of the same direction was defined 

as one. Figure 8 shows the differences in Eq. (9), calculated by RMSEs of gradients in three types of directions. 

In the same direction of observed and predicted gradients, Cases 2–4 predicted a more similar shape of the 

observed water level due to the reduction of the differences from Case 1 except for the difference of the 1 h-

lead-time in Case 3 (Figure 8a). Cases 5, 8, and 10 were worse and Case 7 was the worst. These outputs support 

the results of Figure 7. For the opposite direction of gradients in Figure 8b, Cases 5, 7, 8, and 10 were better by 

more than 15% than Case 1. These results can be explained by the following reason. Because these cases 

predicted relatively small amplitudes of water level across time axis, the gaps between the observed and 

predicted gradients in the opposite direction were also relatively small when compared with the gap of Case 1. 

The neutral direction shows that the gradient gaps in Cases 2–4 were similar to those of Case 1 (Figure 8c). 

However, Cases 5, 8 and 10 provided smaller gaps of gradients when compared with those of Case 1. These 

outputs were consistent with the results of Figure 8b. Case 7 provided the worst, which was not consistent with 

the differences of Case 7 of Figure 8b. This can be explained by the following description. Case 7 used only 

rainfall as input data that did not often occur in reality. Most data from rainfall were zero and weakly responded 

to the temporal changes of water level. The impact of the neutral direction on the prediction of zigzag shapes of 

water-level amplitudes were weaker than the other directions of gradients because the number of the neutral 

direction was small. Note that the ratios of three directions of gradients are unable to be simply added with the 

percent of the differences in Figures 8a, b and c because those percent are averaged values over the number of 

the occurrences in each direction. With the introduction of the RMSEs of gradients between observed and 

predicted water levels, the shapes of amplitudes could be evaluated. As a result, we revealed that Case 2 

performed a more accurate prediction of water level through the error evaluation of amplitude shapes as well as 

RMSEs between observed and predicted water levels.  
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Figure 5. Observed water level and rainfall at D1 during April to August of each group. 

 

 
Figure 6. Predicted water levels of Cases 0 and 1 compared with observed data at D1 in G2. (a) rainfall and (b) to (d) 

indicate water levels in 1 h-, 3 h-, and 6 h- lead times. Two small panels show water levels in the normal pumping and 

flood-control pumping operations, respectively.  
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Figure 7. Differences between Case 1 and the other cases in 1 h-, 3 h-, and 6 h-lead times, showing (a) mean RMSEs among 

all groups and (b) RMSEs in group 2. The negative values indicate the reduction in RMSE when compared with Case 1. 

 

 

 
Figure 8. The differences with (a) the same, (b) opposite, and (c) neutral directions across time axis in the M-RMSEs of 

gradients of water level in the three lead times. Note that 1 h-lead-time difference in Case 7 in (a) reached about 100%. 

 

4. CONCLUSIONS 

This study conducted the model sensitivity tests of input data, provided by the irrigation and drainage pumping 

stations for the irrigation season, using an advanced deep neural network (LSTM) model. The input data were 

set up by plural combinations of data items (e.g., water level and rainfall) and observed locations. The accuracy 

of the model prediction of water level at the pond was evaluated by a cross validation method with RMSEs 

between model and observation and by measures of shape differences of water level with gradient directions. 

We revealed that a better prediction of water level at the pond was provided by Case 2 with I1–I4 and D1 

pumping stations with the data items: water level, rainfall, and discharge. In addition, water level was a key 

variable as input data to minimize the errors. 
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