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ABSTRACT 

Precipitation data are fundamental to generating a landslide hazard map or for back-calculating landslide events. 

The spatial variation characteristic of precipitation data plays a critical role in the spatial analysis of landslides. 

Traditionally, observation data from rain-gauge stations and spatial interpolation techniques such as IDW or 

Kriging are used to generate the spatial data of precipitation. This method can analyze landslide events, but it is 
limited by the number of rain-gauge stations in the study area and the conditions for the spatial interpolation 

methods. In recent years, satellite precipitation data have been developed and collected by numerous 

organizations such as Global Precipitation Measurement (GPM) and the Tropical Rainfall Measuring Mission 
(TRMM). Satellite precipitation data can provide good regional information about the distribution of rainfall, 

especially when compared to rain-gauge data. However, there are disadvantages to satellite precipitation data 

such as coarse resolution and questionable accuracy. The purpose of this study is to propose a conceptual 
framework for spatial analysis of extreme rainfall-induced landslides using satellite precipitation data from a 

case study of tropical storm Nanmadol (2017) in the city of Asakura, Fukuoka prefecture, Japan. The satellite 

precipitation data were calibrated and downscaled to obtain the final rainfall dataset. The rainfall-induced 

landslide model was developed based on a combination of the Green-Ampt infiltration model and the infinite 
slope model. According to our calculations, this conceptual framework using satellite precipitation data can 

identify landslide areas in the city of Asakura, Fukuoka prefecture, Japan.  

Keywords: Satellite precipitation, extreme rainfall, landslide, typhoon, slope failure 

1. INTRODUCTION 

Landslides triggered by rainfall in Japan commonly occur during the Typhoon season. Numerous researchers 

have reported cases of typhoon-induced landslides (Kawamoto et al., 2000; Yokoyama et al., 2006; Sehara et 

al., 2006; Taniguchi, 2008; Murakami et al., 2008; Sakurai, 2014; Chaithong, et al., 2018; and Hazarika et al., 
2020). Several factors influence landslide occurrences such as soil properties or topography, but the amount of 

rainfall is the most significant. Lim et al. (1996) monitored and analyzed residual hillslopes in Singapore. They 

found that matric suctions were reduced during and after rainfalls and the perched water table appeared below 

the ground surface during the period of rainfall, which may lead to landslides. The relationship between 
precipitation and other factors was established to assess and predict the occurrence of rainfall-induced landslides 

(Borga et al., 2002; Rosso et al., 2006; Baum et al., 2010). Previous studies have used three main methods to 

relate precipitation and landslide events: 1. critical rainfall threshold, 2. statistically based landslide 
susceptibility model, and 3. physically based landslide model (Apip et al., 2010). The rainfall dataset is needed 

for input in all methods.  

The rainfall dataset is generally provided by rain gauges as point measurements. Rain gauges provide accurate 
rainfall measurements on the ground. However, these are not a true representation of the amount of rain in large 

areas (Collischonn et al., 2008; Garcı ́a-Pintado et al., 2009). They represent only the small area around the rain-

gauge station (Jia et al., 2011). Various factors can cause errors in rain-gauge measurements such as wind, 

evaporation from the containers, and instrument errors (Ciach, 2003; Cheema & Bastiaanssen, 2012). Villarini 
et al. (2008) studied the spatial sampling error of rain-gauge measurements and found that the rain-gauge 

measurement is reasonable for a dense network. If the network is sparse, it becomes necessary to consider spatial 

sampling uncertainties in the estimation. Because it is difficult to install rain gauges in mountainous areas, it 
becomes harder to predict and assess landslides in landslide-prone areas. In the last three decades, satellite 

precipitation measurement projects based on remote sensing techniques such as Tropical Rainfall Measurement 
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Mission (TRMM) (1997–2014) and Global Precipitation Measurement (GPM) (2014–present) have been 
developed. Satellite precipitation measurement products have been generated and released to the public. These 

include the PERSIAN Cloud Classification System, TRMM multi-satellite precipitation analysis (TMPA), and 

Integrated Multi-satellitE Retrievals for GPM (IMERG) (Prakash et al., 2016, Tang et al., 2016, Chen et al., 
2020). Satellite-based rainfall datasets have the advantage of providing full spatial coverage of the areas of 

interest. However, their spatial resolution is coarse (0.1°× 0.1° grid cell) for the catchment scale analysis (Jia et 

al., 2011; Cheema & Bastiaanssen, 2012; Huffman et al., 2017; Maidment et al., 2017). Numerous studies 

attempted to combine the gauge- and satellite-based rainfall productions as an alternative method for water-
related disasters, such as floods and landslides (Apip et al. 2010; Immerzeel, 2010; Rossi et al., 2017; Tam et 

al., 2019). Therefore, the purpose of this study is to develop a framework for a shallow landslide assessment 

system using satellite rainfall production and a physically based distributed hydrological and geotechnical 
modelling system.  

2. FRAMEWORK OF THE RAINFALL-INDUCED LANDSLIDE MODELING SYSTEM 

Figure 1 presents the conceptual framework for a physical model of assessing rainfall-induced shallow 

landslides. Three major parts necessary for developing the rainfall-induced shallow landslide model are 

discussed: (1) bias correction and spatial downscaling of satellite precipitation; (2) sloping surface infiltration 
and groundwater table calculation; and (3) calculation of factor of safety based on the infinite slope stability 

model. The framework of modelling shallow landslides triggered by rainfall was developed on the geographic 

information system platform. To validate the performance of our framework, the receiver operating 
characteristic (ROC) curve was selected to test the performance. 

  

Figure 1. Concept framework of a physical model for assessing rainfall-induced shallow landslides. 

2.1 Satellite rainfall dataset, bias correction and spatial downscaling method  

Satellite rainfall data were obtained from the Integrated Multi-satellitE Retrievals for GPM (IMERG). GPM is 
a joint project created by the National Aeronautics and Space Administration (NASA), the Japan Aerospace 
Exploration Agency (JAXA), the Centre National d’Études Spatiales (CNES), the Indian Space Research 
Organization (ISRO), the National Oceanic and Atmospheric Administration (NOAA), the European 
Organization for the Exploitation of Meteorological Satellites (EUMETSAT), and others (Huffman et al., 2018). 
This study uses the IMERG “Final” run V06 which has a 0.1 × 0.1 degree resolution (~10 × 10 km.) and daily 
interval. The IMERG final run is a satellite product ~3.5 months after the observation month. For gauging 
rainfall data, our study uses data provided by the Japan Meteorological Agency. A total of 151 rain gauges 
covering the island of Kyushu of Japan were used to calibrate and downscale the satellite rainfall data. 

The downscaling technique in our study is based on the work of Cheema and Bastiaanssen, 2012; Sarr et al., 
2015; and Mahmud et al., 2018. First, the ratio of measurement for each rain gauge and the IMERG satellite 
rainfall was calculated using Eq. (1) to find the downscaling co-efficient. The downscaling co-efficient 
generated a spatially interpolated map using an inverse distance weighted (IDW) interpolation with 30-meter 
resolution. Next, the IMERG satellite rainfall was re-gridded from the original resolution to a resolution of 30 
meters. Finally, the values from the spatially interpolated map of downscaling co-efficient were multiplied by 
the values from the re-gridded IMERG satellite rainfall to get the adjusted rainfall dataset.  

                                                                      (x,y) (x,y),
/rain gauge satx y

k R R                                                                        (1) 

                                                                   (x,y) (x,y) (x,y)adjust satR R k                                                                   (2) 

where k(x,y) is the downscaling co-efficient at a given point. Rrain-gauges(x,y) is the rain-gauge rainfall data. Rsat(x,y) 

is the satellite rainfall data. Radjust(x,y) is the adjusted rainfall data. 

Nash-Sutcliffe efficiency (NSE) and root-mean-square error (RMSE) were used to indicate the performance of 

before and after in the satellite rainfall dataset. Of all the rain gauges on the island of Kyushu of Japan 85% (128 
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gauges) were exposed to bias correction and downscaling between the IMERG satellite rainfall dataset and the 
rain gauges dataset. The remaining 15% (23 rain gauges) were used to validate this procedure. The NSE and 

RMSE were computed for two measurement pairs: gauge rainfall data versus before-adjusted satellite rainfall 

data, and gauge rainfall data versus after-adjusted satellite rainfall data. Nash and Sutcliffe (1970) proposed a 
method to calculate the efficiency index for hydrological models. The NSE presents an index of agreement and 

disagreement between the observed and computed values whose plot of observed and computed values fits the 

1:1 line (Nash & Sutcliffe, 1970; McCuen et al., 2006; Cheema & Bastiaanssen, 2012). The NSE is shown in 

Eq. (3). 
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where Rsatellite-data(x,y) is the before and after adjusted satellite rainfall data. ( , )rain gauge x yR  is the mean rain gauge 

rainfall data. The range of the NSE value is between -∞ and 1. NSE equal to 1 is the perfect fit for the observed 

and estimated value (optimal value). NSE equal to 0 means that the data are as accurate as the mean observed 

value. NSE between 0.0 and 1.0 is commonly viewed as acceptable. (Cheema & Bastiaanssen, 2012; Krakauer 
et al., 2013).  

The RMSE was shown in Eq. (4). The perfect value of the RMSE is 0.  
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2.2 Sloping surface infiltration and groundwater table calculation 

Infiltration of precipitation is the main supply source of groundwater (Sangrey et al, 1984; Duan et al., 2019). 
The Green-Ampt infiltration model is widely used to simulate the process of rainfall infiltration into the soil. 
Chen and Young (2006) modified the Green-Ampt infiltration model for sloping surfaces. The infiltration rate 
is shown in Eq. (5) and the cumulative infiltration is shown in Eq. (6).  
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where i is the infiltration rate. I is the cumulative infiltration. ksat is the saturated hydraulic conductivity of the 
soil. β is the slope angle. ψ is the suction at the wetting front. Δθ is the deficit of the volumetric moisture content.  

Based on Darcy’s law, Rosso et al. (2006) proposed a groundwater index that is the ratio between the depth of 

the groundwater table and the depth of the soil, and can be expressed as follows: 
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with,  
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Where ω is the groundwater table index, h is the depth of the groundwater table, z is the depth of soil, P is the 
net rainfall as our study refers to the infiltration rate, T is the hydraulic transmissivity, b is the width of channel 

flow, a is the upslope contributing area, Sr is the degree of saturation, e is the void ratio, and t is rainfall duration.  

2.3 Infinite slope stability model  

During the rainfall period, rainwater seeps into the sloping surface and generates groundwater. This process 
may lead to slope failure. A shallow landslide has small depth-to-length ratios and failure planes parallel to the 
slope surface (Zhang et al., 2011). Hence, the infinite slope stability model is widely used to simulate a shallow 
landside triggered by rainfall. The stability index of the slope is presented as a factor of safety. If the factor of 
safety is less than 1, the slope is unstable. The factor of safety is the ratio between the shear strength of the slope 
and the shear stress of the slope. The infinite slope stability equation is shown in Eq. (13). 
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where Fs is the factor of safety. 
sat  is the saturated unit weight of soil. c  is the soil cohesion,   is the friction 

angle. 
w  is the unit weight of water.   

3. STUDY AREA AND DATASET  

3.1 Study area  

The study area is the small watershed located in the city of Asakura, Fukuoka prefecture, Japan, on the island 
of Kyushu. This area was affected by tropical storm Nanmadol (2017) which triggered a flood and landslide. 

Nanmadol (2017) made landfall on Kyushu on 4 July 2017. Figure 2 shows the track of tropical storm Nanmadol 

(2017), the study area, and the landslide scars. The rainfall during tropical storm Nanmadol (2017) recorded at 
the Asakura rain gauge station indicated a maximum rainfall of 516 mm. Figure 3 shows the amount of rainfall 

during tropical storm Nanmadol (2017) when it hit the island of Kyushu. The landslide in Asakura occurred on 

5 July 2017. 

 
Figure 2. a. track of tropical storm Nanmadol (2017), b. study area and landslide scars. 

3.2 Dataset  

After the tropical storm passed over Kyushu, our team investigated affected areas in Asakura. Soil and intact 
rock samples were collected to determine their engineering properties. According to laboratory testing, the 

cohesion of the soil was 8 kPa, and the friction angle of the soil was 24.6 degrees. For a spatial map of the basic 

properties of the soil and depth of the soil layer, our study used global gridded soil information provided by the 

International Soil Reference Information Centre (ISRIC) (Hengl et al., 2017). Figure 4 shows a map of the soil 
properties and depth of the soil layer. For a digital elevation model, we used ASTER GDEM V3 developed by 

the Ministry of Economy, Trade, and Industry (METI) of Japan and the United States National Aeronautics and 

Space Administration (NASA). 
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Figure 3. Amount of rainfall during the Tropical storm Nanmadal (2017) hit the island of Kyushu. 

    

 
Figure 4. a. clay content, b. sand content, c. density of soil, and d. depth of soil layer. 
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4. RESULTS AND DISCUSSION 

Figure 5 shows the daily time series comparison of the gauge rainfall data and the IMERG final run satellite 
rainfall data. The curve shows that the IMERG final run satellite rainfall data both overestimated and 

underestimated the gauge rainfall data. Jiang and Bauer-Gottwein (2019) mentioned that the correlation of 

IMERG satellite rainfall data and gauge rainfall data increases with longer time scales. Based on their research, 
the daily scale was the lowest correlation compared with the monthly and yearly scales. Considering the scatter 

plot of IMERG satellite rainfall and gauge rainfall before correction, the satellite rainfall almost underestimated 

the gauge rainfall when the amount of gauge rainfall was higher than 100 mm. When gauge rainfall measured 

0 to 100 mm, the IMERG final run satellite rainfall both overestimated and underestimated the gauge rainfall. 
The RMSE of uncorrected satellite rainfall was approximately 47.15 mm. The NSE value of uncorrected satellite 

rainfall was approximately 0.045. After bias correction, the graph clearly shows that the satellite rainfall data 

improved. The RMSE of corrected satellite rainfall is approximately 43.02 mm and the NSE value is 
approximately 0.205.  

Figure 6 is a spatial map of uncorrected/corrected satellite rainfall data and gauge rainfall data from 4 July 2017 

through 7 July 2017. When comparing the rainfall distribution patterns of uncorrected satellite rainfall and gauge 

rainfall, we found that the uncorrected satellite rainfall and gauge rainfall had similar distribution patterns. The 
IMERG satellite rainfall data could show areas with high-intensity rainfall. However, the magnitude of the 

IMERG satellite rainfall data was different from the gauge rainfall data. After downscaling and bias correction, 

the distribution and magnitude of adjusted rainfall data were fairly similar to the gauge rainfall data.        

 
Figure 5. Scatter plot showing the relationship between gauge rainfall data and the IMERG final run satellite rainfall data.  

Our proposed framework was performance tested by using the event of a shallow landslide triggered by tropical 

storm Nanmadol (2017) in Asakura. Figure 7 shows the safety factor map on 05 July 2017. We used the receiver 

operating characteristic (ROC) curve to evaluate the performance of our proposed framework. The ROC curve 
compares our simulated results with the actual landslide. The red areas unstable areas simulated by the proposed 

framework, and the factor of safety in those areas is less than 1. The simulated stable areas have a factor of 

safety of more than 1. The black labels indicate the actual shallow landslide scars. According to our calculations, 
the true positive rate was 0.48 and the false positive rate was 0.12. The accuracy of the proposed framework for 

a physical model of assessing rainfall-induced shallow landslides using satellite rainfall data was 0.8. The area 

under curve (AUC) of ROC was 0.67. This is quite low. However, the accuracy of the proposed framework is 

satisfactory. Since the true positive rate value is quite low, the predicted unstable areas do not quite match the 
actual landslide scars. The false-positive rate is low, which is a good result meaning that the predicted stable 

areas are well matched with the actual stable areas. Overall, in our performance summary, the ROC curve of 

the proposed framework is above the random line. This means that the performance of our proposed framework 
is acceptable and moderately good. Figure 8 shows the receiver operating characteristic curve of our study. 

The maps of the factor of safety and the actual landslide areas show that the shallow landslide occurred on the 

steep slope and valley. The landslide areas occurred on high upslope contributing area values. The locations and 

densities of landslide occurrences are related to the conditions of the upslope contributing area and slope 
(Yamashita et al., 2017). 
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Figure 6. Spatial map of uncorrected/corrected satellite rainfall data and gauge rainfall data. 
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Figure 7. The factor of safety map on 05 July 2017. 

 

Figure 8. Receiver operating characteristic curve of the study. 

5. CONCLUSIONS 

The IMERG final run satellite rainfall can illustrate the distribution of rainfall. The magnitude of the IMERG 
final run satellite rainfall both underestimates and overestimates; thus, it should be calibrated with the gauge 
rainfall values. According to our evaluation of the performance of the framework for a physical model of 
assessing rainfall-induced shallow landslides, the accuracy is 0.8 and the area under curve of ROC is 0.67. 
Therefore, the application of corrected satellite rainfall is a good alternative to simulate rainfall-induced shallow 
landslides. This study demonstrated that the proposed framework has the potential to become a practical method 
for assessing shallow landslide hazards on a regional scale. However, downscaling and bias correction must be 
further developed and improved to increase the performance of the model. Also, the spatial distribution of the 
shear strength parameters, cohesion of soil, and friction angle are a significant challenge in calculating the factor 
of safety map. 
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