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ABSTRACT 

A deep neural network (DNN) model has recently been employed in a riverine flood forecast system. The 

accurate DNN model requires lots of data for machine learning. However, large data for flood events are hardly 

obtained in field measurements because abundant manpower and expensive sensor installation and maintenance 

are required in current research. Additionally, only a few flood events are normally recorded per year even if 

long-term measurement is successfully conducted. To improve data limitation, we introduced transfer learning, 

which pre-trains a model in a source domain and then reuses it in a different domain. This method can be 

beneficial when implementing the DNN model to the flood forecast at the location where insufficient data is 

available. The transfer learning with time-series DNN model potentially has not been successful. Instead, we 

focused on a convolutional neural network (CNN) model, a deep learning architecture and an image analysis 

tool, because it has numerous examples of image analyses with a transfer learning approach. Our previous study 

implemented the CNN model-based transfer learning to time-series flood prediction. The model pre-trained in 

large-size flood events in a source watershed was retrained with a small size data in a target watershed. This 

study performed the extension and improvement of the model with transfer learning in the previous study. An 

accuracy improvement of the model was achieved with a change of training datasets in a validation method. 

The model prediction was able to be extended till the 3h-lead time with reduced or equivalent errors when 

compared with those of no-pre-trained model. 
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1. INTRODUCTION 

One of the machine learning methods, an artificial neural network, has been implemented to riverine flood 

modeling (e.g., Hsu et al., 2010). As deep learning (Bengio et al., 2013) has been dramatically developed, deep 

neural network (DNN) models are currently utilized for riverine flood forecasts as accurate and quick-response 

models. For example, Hitokoto et al. (2016) developed a conventional-based model, such as a multilayer 

perceptron (MLP) model (McCulloch and Pitts, 1943), coupled with deep layers. As another example of the 

DNN models, the long, short-term memory (LSTM, Hochreiter and Schmidhuber, 1997) models that can 

accurately predict time-series data were implemented to local flood events (Yamada et al., 2018; Hu et al., 2018). 

The DNN models are more efficient to set up than being a physical-based model such as a rain-runoff model. 

No preparation of geological and hydrological information is required for the DNN models. However, an 

accurate prediction strongly requires high quality and large-size datasets. In particular, large datasets are hard 

to obtain for riverine flood modeling in local, mid- to small-size watersheds because of poor monitoring tools 

such as videos and sensors for water level and discharge measurements. To solve this problem, Kimura et al. 

(2020) proposed a DNN model coupled with a transfer learning approach, which is that a pre-trained model in 

a source watershed was applied to a different (target) watershed to predict the water levels in the 1h-lead time 

for larger flood events (Figure 1). Their study reported that the pre-trained model in the source watershed 

successfully reduced a computational cost and slightly improved accuracy in the target watershed after 

retraining parts of the model. Note that a convolutional neural network (CNN) model proposed by LeCun et al. 

(1998) was employed as the DNN model because the CNN model has provided numerous good examples with 

transfer learning in image analyses. 

The CNN model created by Kimura et al. (2020) still has crucial two tasks that should be improved to make 

it more robust. One task is related to the improvement of prediction accuracy. The pre-trained model poorly 

captured the maximum peaks of water level with 10–20% errors for the prediction for the top-three largest flood 

events in past datasets. The errors were calculated by the typical evaluation method that consists of three 

processes: training that tunes inner parameters, validation that tunes hyperparameters, and test that provides the 
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prediction compared with the observation. This method is often used in machine learning, but how to assign 

datasets to each process may affect the magnitude of errors. That is, choosing datasets may be a key to create a 

robust trained model, especially in the training process. The poor training provides insufficient accuracy if some 

feature quantities among large flood events are learned. Therefore, the pre-trained model with poor training of 

large flood events in the source watershed must have resulted only in a little improvement in the target watershed 

when compared with the output from no pre-trained model. Another task is that lead times of the model 

prediction should be extended to understand a temporal trend of the prediction because the previous study dealt 

only with the 1h-lead time. Extending lead times is not easy in this model because it is necessary to separately 

pre-train the model in the 1h-, 3h-, … lead times one by one corresponding to the prediction in each time step. 

     The purpose of this study is to solve the two tasks related to model accuracy and functional extension for the 

previous model created by Kimura et al. (2020). The first task is to improve a prediction accuracy of the model 

with a transfer learning approach in the target watershed by means of the error reduction of the pre-trained 

model for the past three largest flood events in the source watershed. To solve this task, the leave-one-out cross 

validation will be introduced for the error evaluation of the pre-trained model. Another task will be solved by 

adding the output function of the model that is able to predict till the 6h-lead time in the target watershed as 

well as the source watershed. 

2. METHOD 

2.1 Study site 

This study chose two watersheds that do not have large dams and ponds for flood control (Figure 1). These 

watersheds were named source watershed and target watershed for an introduction of a transfer learning 

approach. The source watershed is located in southwest Japan, which is a part of the entire river basin to avoid 

a large reservoir in the downstream area. The source watershed has an area of 861 km2, a main river with a 

length of 52 km up to a key gauge station where a model predicted, and an elevation that ranges from 118–1,350 

m. The basin has experienced numerous severe flood events due to typhoon attacks and rainy season. The target 

watershed is located in north Japan. It has an area of 1,380 km2, a main river with a length of 115 km that flows 

to the North Pacific, and an elevation that ranges from 0–978 m. Heavy rainfall events have seldom occurred 

due to weak impacts of typhoons and rainy season. 

 

 
 

Figure 1. The maps for source and target watersheds with a transfer learning approach. DNN is a deep neural network. 

 

2.2 Field data acquisition 

The hourly datasets for rainfalls and water levels during 1992–2017 in the source watershed and during 2000–

2019 in Target were obtained from the hydrology and water quality database (www1.river.go.jp) and the 

meteorological database (www.data.jma.go.jp/gmd/risk/obsdl/index.php) managed by the Ministry of Land, 

Infrastructure, Transport, and Tourism in Japan (MLIT Japan) and the Japan Meteorological Agency (JMA), 

respectively. The observed datasets in the source watershed were obtained from five-gauge stations for water 

level and 11-gauge stations for rainfall. Target had four water-level stations and nine rainfall stations. The 

downstream stations S1 and T1 were selected as the locations where the model predicts water levels (Figure 1). 

This study collected past flood events at each watershed. Each flood event, including the flood maximum peak, 

has a 123h duration, which consists of three days before the peak and two days after the peak. One flood event 
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was identified when the water level exceeded a certain criterion related to risk levels (approximately 45–60% 

of the highest peak of the observed datasets among all flood events). If multiple peaks exist locally in one flood 

event, only the highest peak is regarded as the maximum value of the event. The numbers of datasets of the 

source and target watersheds are 43 and 17, respectively (Tables 1 and 2). Detailed information of these datasets 

is shown in the previous study (Kimura et al., 2020). 

 
Table1. Flood events in the source watershed 

Events in the 
source 

watershed1 

Maximum water 
level (m) during 

each event2 
Remarks 

6/21/2006 4.99  

7/19/2006 5.28  

8/15/2006 5.20  

8/5/1992 4.56  7/8/2007 5.58  

7/29/1993 9.50 3rd highest peak 7/11/2007 7.11  

8/7/1993 8.04  9/28/2008 5.18  

8/13/1993 6.99  6/17/2010 6.30  

6/10/1994 4.80  6/30/2010 9.16  

6/1/1995 4.66  6/13/2011 4.84  

6/22/1995 6.90  6/18/2011 4.77  

7/15/1996 6.84  6/19/2012 5.13  

8/11/1996 5.18  6/25/2012 4.60  

8/4/1997 5.05  7/10/2012 5.86  

7/24/1999 6.72  6/25/2014 5.31  

8/14/1999 6.03 Moderate peak 7/28/2014 6.61  

9/11/1999 8.26  8/6/2014 6.08  

9/21/1999 5.42  7/19/2015 5.05  

5/31/2000 6.47  8/22/2015 4.62  

6/18/2001 5.30  6/25/2016 6.09  

8/5/2003 6.79  7/6/2016 5.52  

8/27/2004 9.80 2nd highest peak 7/11/2016 6.21  

10/17/2004 7.70  9/17/2016 7.91  

9/3/2005 10.65 The highest peak 8/4/2017 5.13  

1 Date and time is denoted as month/day/year for a flood event; 2 Maximum value at each event was observed at the 

predicted points (Figure 1). 

 

Table2. Flood events in the target watershed 

Events in the 
source 

watershed1 

Maximum water 
level (m) during 

each event2 
Remarks 

10/7/2009 3.33  

9/20/2011 3.20 Moderate peak 

4/5/2013 3.71  

4/9/2000 3.81  9/14/2013 4.33  

9/9/2001 4.84 2nd highest peak 10/6/2015 4.15  

9/30/2002 3.38  8/15/2016 4.17  

8/7/2003 4.28  8/19/2016 5.03 The highest peak 

4/18/2006 3.30  8/28/2016 3.46  

8/17/2006 4.04  9/7/2016 4.15  

10/6/2006 4.77 3rd highest peak 8/7/2019 3.22 Provisional value 

1 and 2 are the same as Table 1. 
 

2.3 A conventional neural network model 

A multiple layer (MLP) model, one of the conventional neural network models, consists of three layers: input 
layer, hidden layer, and output layer, and makes a network structure with nodes (Figure 2). The hidden layer 
can be extended to multiple layers. Each node has an activation function that filters input variable 𝑥  with 
weighted coefficients 𝑤 into an output variable 𝑦. If a layer has 𝐼 nodes, a certain node 𝑗 in a subsequent layer 
receives 𝐼  input values. These inputs weighted by coefficients are integrated and added by a bias 𝑏𝑗 . The 
activation function 𝐹(∗) outputs 𝑧𝑗 from the node of j. These variables are defined in the following equations. 

𝑦𝑗 = ∑ 𝑤𝑖,𝑗𝑥𝑖
𝐼
𝑖=1 + 𝑏𝑗, (1) 

𝑧𝑗 = 𝐹(𝑦𝑗). (2) 

A CNN model is a deep neural work model. We created a relatively simple algorithm of a CNN model based 
on past studies (e.g., Suzuki et al., 2018). The variables in Eqs. (1) and (2) are mapped to a two-dimensional 
(2D) spatial image in the CNN model, which consists of a convolution layer (convolution) and a max-pooling 
layer (pooling). We consider that the input variable 𝑥 has the 2D source image with pixel size (L × L), which is 
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filtered with a H × H small window of convolution with a table of weighted values. The convolution takes the 
same pixel size of the small window from the 2D source image, and then multiplies the weighted values of the 
H × H window to the values of the clipped pixels. This filtering way is repeated over the source image by 
shifting the window. Components of the input and convolution kernel (filter) are defined as xi,j (1≤ i ≤ L, 1≤ j ≤ 
L) and wk,l,n (1≤ k ≤ H, 1≤ l ≤ H, 1≤ n ≤ N), respectively, where N is the number of various filters. This process 
is shown in Figure 3a. Note that a zero-padding technique is introduced to ensure that the size of input is 
equivalent to that of the output. That is, the xi,j was extended with 0≤ i ≤ L+1, 0≤ j ≤ L+1 so that x0,j, xi,0, xL+1,j, 
and xi,L+1 are set to zero. The xi,j is multiplied by wk,l,n while shifting a grid at (i, j) one by one on the image with 
the filter. This equation, including the convolution form and bias bn in the function is defined as follows: 

𝑦𝑖,𝑗,𝑛 = ∑ ∑ 𝑤𝑘,𝑙,𝑛𝑥𝑖+𝑘−𝐻 2−1⁄ ,𝑗+𝑙−𝐻 2−1⁄ + 𝑏𝑛
𝐻
𝑘=1

𝐻
𝑙=1 , (3) 

𝑧𝑖,𝑗,𝑛 = 𝑓(𝑦𝑖,𝑗,𝑛), (4) 

where H/2 is an integer value with decimals truncated. We utilize a rectified linear unit (ReLU) as the activation 
function (f), which can select positive input values due to an improvement in the conversion of a matrix, as 
expressed in the following equation. 

𝑓(𝑦𝑖,𝑗,𝑛) = max(𝑦𝑖,𝑗,𝑛, 0) (5) 

By filtering in the convolution, common features among images are extracted when the filter pattern is similar 
to a portion of each image.  

The pooling does not have weighted coefficients and activation functions. It is usually utilized to produce 2D 
data, and is defined for a 2D image (𝑥𝑖,𝑗) in the following equation: 

𝑧𝑝,𝑞 = max(𝑥𝑖,𝑗), (i, j) ϵ Up,q , (6) 

where Up,q is the square unit domain with the size R × R and (p,q) are the horizontal and vertical components. 

Up,q strides over a 2D image with a non-overlap approach. As horizontal and vertical scales are shrunk 1/R times, 

the maximum value of xi,j in Up,q provides output with a data size of 1/R2 times of the input 2D data (Figure 3b). 

The features extracted by the convolution can satisfy the consistency by the pooling even if the same features 

in reality are recognized as different features due to searching errors that consider shifted and rotated features. 

The CNN model in this study had two convolution layers and two pooling layers. After going through these 

layers, smaller-size 2D image data are generated and then passed to fully connected layers, which has the same 

function of Eqs. (1) and (2). In the fully connected layers, these 2D image data are converted into numerous 1D 

digital datasets that involve information about classification of the original image. The outputs are generally 

classified with a softmax that converts outputs to probability quantities. Instead, our model employs the sigmoid 

function that can assign the magnitude from the normalized value (0 to 1) between the maximum and minimum 

values to predict a specific magnitude of water level. 

 

 
 

Figure 2. Structures of MLP model that show data flows (a) in network with deep learning and (b) the inner structure of a 

neuron of jth with i-1th, ith, and i+1th inputs with weighed coefficients. 
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(a) Function of convolution layer (b) Function of max-pooling layer 

 

Figure 3 Sketches of the CNN functions: (a) convolution layer and (b) max-pooling layer. 

 

2.4 Transfer learning approach 

We assume two different (source and target) watersheds that may have similar features in both sets of observed 
data. When a model is trained in the source watershed with large datasets, it usually takes ample time to have 
an accurate prediction. If the model is applied to the target watershed without any connection with the source 
watershed, training the model also causes ample time. A transfer learning approach (Pratt, 1992) is one of the 
solution methods for improvement of the efficient prediction (e.g., reduction of run time) in the target watershed 
through the pre-training in the source watershed. It can reuse the common knowledge obtained from the source 
watershed for the target watershed. The CNN model coupled with a transfer learning approach (CNN transfer 
learning) is a well-accepted method in image classification. As our model should perform time-series predictions, 
CNN transfer learning is utilized with a conversion tool from image data to time-series data. First, the CNN 
model is run in the source watershed (Figure 4a). Second, the CNN model that fixes parts of the hidden layers 
is reused in the target watershed. Last, “the fully connected layer 1” and “the fully connected layer 2” in the 
deep layers of the CNN model are retrained using the datasets of the target watershed (Figure 4b). 

 
Figure 4. Structures of (a) CNN model and (b) CNN with transfer learning. 

 

2.5 Conversion from image data to time-series data  

The conversion method from image data to time-series data is necessary to perform time-series predictions with 
the CNN model. We employ a simple method to arrange plural variables (rainfall and water level) at all gauge 
stations from upstream to downstream on the vertical (totally 16 sets), and to arrange the temporal variation of 
each variable on the horizontal (123 time steps) in Figures 5a and b. The digital values are converted to an image 
using the light and shade of color that ranges from 0–1 (Figure 5c). The observed data are normalized by the 
maximum and minimum values of all observed datasets of water level and rainfall. The spacing between two 
values on the horizontal axis is one hour. The interval of the vertical axis is one for simplicity. 
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The 2D image in the CNN model has to correspond to the time-series data of water level when the model is 
trained and predicted (Figure 5d). A 16 × 16-pixel image (a small window) is selected from the 2D image of a 
flood event. The number of pixels of the small window corresponds to the total sets of observed locations and 
variables of observed data. The information of the small window, including spatial characteristics of a watershed, 
is used as input data. We assume that the information from the input data must be associated with a 1 × 1 image 
(i.e., value) as output at the predicted point and that the value is assigned at the next step (i.e., 1h-lead time), at 
the next three steps (3h-lead time), or at the next six steps (6h-lead time). Note that the predicted point indicates 
a location where water level is predicted. This treatment was separately repeated in time progress as shifted 
from the head of the 2D image to the tail (Figure 5d). The CNN model tries to find spatial patterns in each small 
window. The number of the input set (i.e., four for water-level gauges and nine for rain gauges) in the target 
watershed differs from that of the source watershed. To force the image size of the target watershed to the same 
image size of the source watershed, the image size is expanded from 123 × 13 to 123 × 16 using the interpolation 
to maintain high-resolution images with the Lanczos algorithm (Lanczos, 1950). 

 

 
Figure 5. Procedures for a data creation and a training process with simplified data and conception. (a) plots for temporal 

variables, (b) data normalization of each variable, (c) creation of an image, and (d) a method of learning an image 

corresponding to output value in time series. 

 

2.6 Model evaluation and computational setups 

Accuracy of the CNN model pre-trained in the source watershed is evaluated using a leave-one-out cross 
validation by a root mean square error (RMSE) between predicted and observed outputs. This cross validation 
selects top three largest flood events that have the first-, second-, and third-highest peaks, and one mid-level 
(moderate) peak as a representative of the mid-level peak events (Table 1). One of the four flood events is used 
as a test dataset to compare it with the predicted output by the model after the model is trained with the datasets 
of the other flood events. It is repeated for the other flood events. Then, the RMSEs from the four tests are 
calculated and are considered as degree of accuracy for the pre-trained model. On the other hand, in the target 
watershed, training, validation, and testing processes (James et al., 2013) are employed as a typical evaluation 
of CNN model accuracy. The top three largest flood events and a moderate-peak flood event (one testing dataset) 
are selected for the testing process. The four cases are set up as the testing process for the evaluation of model 
accuracy. The testing process is conducted using one from the selected four events one by one. For validation 
process, another moderate-peak flood event is added to these four flood events as a reference event. These data 
are defined as four validation datasets. The other flood events (12 training dataset) are utilized for the training 
process. The trained datasets exclude the top three largest flood events to achieve accurate prediction even 
without larger flood events. The flood events selected in each process are listed in Table 3. The procedures of 
the CNN transfer leaning (Figure 1) are as follow: first, the CNN model is trained and evaluated with three tests 
in the source watershed with 47 datasets, then creating the pre-trained model, trained with all the datasets; 
secondly, the pre-trained model is retrained (or fine-tuned) with training datasets in the target watershed, then 
being checked to see whether or not a loss function is overfitted among validation datasets; and finally the 
testing process is performed using one of the top three largest flood datasets or the moderate-peak flood dataset. 
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The programs for the models (CNN and CNN transfer learning) were created by Python (version 3.6.4, 
www.python.org) incorporated with Keras libraries (keras.io/ja) on the Window-OS PC that has the Intel(R) 
Core(TM) i7-4770K CPU @ 3.50GHz. The setups of several parameters such as batch size, epoch number and 
activation functions are shown in Table 4. 

 

Table 3. Datasets for training, validation, and testing in the target watershed. 

Name  Training datasets Verification datasets Test dataset 

Case 1 
9/30/2002, 8/7/2003, 4/18/2006, 8/17/2006, 10/7/2009, 4/5/2013, 

9/14/2013, 10/6/2015, 8/15/2016, 8/28/2016, 9/7/2016, 8/7/2019  

4/9/2000, 9/9/2001, 

10/6/2006, 9/20/2011 
8/19/2016 

Case 2 Same as above 
4/9/2000, 10/6/2006, 

9/20/2011, 8/19/2016 
9/9/2001 

Case 3 Same as above 
4/9/2000, 9/9/2001, 

9/20/2011, 8/19/2016 
10/6/2006 

Case 4 Same as above 
4/9/2000, 9/9/2001, 

10/6/2006, 8/19/2016 
9/20/2011 

 

Table 4. Setups of CNN parameters and functions. 

Parameters/ functions Values /formula Remarks 

Convolutional layer 
Filter size 3 × 3  

Filter number 5  

Pooling layer Filter size 2 × 2  

Fully connected layer 1 Neuron number 16  

Fully connected layer 2 Neuron number 1  

Learning process 

Batch size 100  

Epoch number 100  

Learning rate 0.001  

Optimizer Adam  

Activation function 1 to 3 ReLU See Figure 4a 

Activation function 4 Sigmoid See Figure 4a 

Loss function 
Mean square error = 
1

𝑁1
∑ (𝑉𝑐𝑖 − 𝑉𝑜𝑖)

2𝑁1
𝑖=1   

ci=model, oi= observation, 

N1=the number of data 

Error evaluation 

Root mean square error (RMSE) = 

√
1

𝑁1
∑ (𝑉𝑐𝑖 − 𝑉𝑜𝑖)

2𝑁1
𝑖=1   

Same as above 

Nash–Sutcliffe coefficient (NS) = 

1 − ∑ (𝑉𝑐𝑖 − 𝑉𝑜𝑖)
2𝑁1

𝑖=1 ∑ (𝑉𝑜𝑖 − 〈𝑉𝑜𝑖〉)
2𝑁1

𝑖=1⁄   

Same as above, and <*> = 

average 

 

3. RESULTS & DISCUSSION 

We first performed the verification of the CNN model as a pre-trained model to predict water levels in the top 

three largest flood events and a moderate flood event in the source watershed using the leave-one-out cross 

validation. Figure 6 shows the predicted water levels compared with the observation in the 1h-, 3h- and 6h-lead 

times in the four flood events. For the error evaluation, the NSEs ranged from 0.98–0.99 in the 1h-lead time, 

0.95–0.99 in the 3h-lead time, and 0.76–0.96 in the 6h-lead time, respectively. The predicted water level for the 

third-largest flood event in the 6h-lead time was the poorest. The RMSEs of the 1h- and 3h-lead time in the 

largest, and the second largest flood event were similar with 0.35 m for the 1h-lead time and 0.20 m for the 3h-

lead time. On the other hand, the RMSEs of the other events in the 3h-lead time were greatly worse than that of 

the 1h-lead time (i.e., 0.45 vs. 0.28 m for the third-largest event, and 0.23 vs. 0.10 for the moderate event). The 

worse result for the third-largest flood event may be caused by a more complicated wave shape including clear 

two peaks, which is hard to be captured due to a few training patterns that occurred in past datasets. Another 

worse result was caused by time-lags when the wave started up. Past study by Kimura et al (2020) reported that 

the RMSEs ranged from 0.14–0.73 m in the 1h-lead time in the same flood events for the source watershed. The 

different error validation in this study showed the error reduction by 25–60% in the 1h-lead time. Furthermore, 

the conventional MPL model with deep learning developed by Hitokoto at al. (2016) reported that mean RMSEs 

for the four large flood events in water level prediction were 0.12 m in the 1h-lead time and 0.27 m in the 3h-

lead time. Although their datasets were quite different from ours due to the data selection, a simple comparison 

of both RMSEs is shown here. Their mean RMSE was greatly better than the RMSEs (0.19–0.34 m) for the top 

three largest events from our model in the 1h-lead time; however, their mean RMSE for the 3h-lead time was 

partly similar to the RMSEs (0.22–0.45 m) by our model. The predicted water level in the 6h-lead time had the 

worst reproductions with several unstable oscillations when the wave shapes were peaks. The RMSEs (0.64–

1.09 m) in the 6h-lead time from our study were dramatically increased by twice to three times from those in 
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the 3h-lead time for the four flood events. As a result, the model may not be utilized for a longer time-series 

prediction like the result that the model predicted in the 6h-lead time. 

 
Figure 6. Comparisons between observed and predicted water levels in the 1h-, 3h-, and 6h-lead times in the source 

watershed simulated by the pre-trained model in (a) the largest flood event, (b) the second-largest flood event, (c) the third-

largest flood event, and (d) a moderate-peak flood event. Obs. = observation and LT = lead time. 

 

Using the pre-trained model, the model predictions for the four cases (Table 3) were performed in the target 

watershed as a transfer learning approach. Two fully connected layers of the pre-trained model (Figure 4b) were 

retrained separately with 0, 10, 20, and 40 times in the epoch number in 1h- and 3h-lead times. In the error 

evaluation, the RMSEs in four epoch numbers of the retraining were compared with the RMSE of no pre-train 

model (i.e., no transfer learning) with a default epoch number (=100) (Figure 7). The RMSEs of the top three 

largest flood events were greatly reduced from the RMSE of no pre-trained model in the 1h-lead time by 10–40 

of the epoch number. The retrained model for the moderate-peak flood event had a similar RMSE to no pre-

trained model from 10–40 of the epoch number (Figure 7a). For the 3h-lead time, the RMSEs of the second and 

third largest flood events (Cases 2 and 3) up to 40-time retraining were significantly reduced from the RMSE 

of no pre-trained model (Figure 7b). The RMSEs of the highest- and moderate-peak flood events (Cases 1 and 

4) were unable to reduce but were similar to those of no pre-trained model when the retraining was done by 40 

times (Figure 7b). For the 6h-lead time, the RMSE of the third largest flood event was slightly higher than that 

of no pre-trained model even for 60-time retraining, but the others were improved by up to 40-time retraining. 

In addition, no retraining (zero time) of the pretrained model provided the worst error in any cases.  

Figure 8 shows the flood waves with 40-time retraining in 1h-, 3h-, and 6h-lead times for the top three largest 

and moderate-peak events to compare with the observed data. The NSEs ranged from 0.98–0.99 in the 1h-lead 

time, from 0.96–0.99 in the 3h-lead time, and from 0.93–0.96 in the 6h-lead time, respectively, for the model 

accuracy. The RMSEs of the 3h-lead time for the top three largest and moderate-peak flood events were worse 

by 31–73% than those of the 1h-lead time. The RMSE of the highest-peak flood event (Case 1) in the 3h-lead 

time was larger than that of no pre-trained model. This implies that a complicated wave shape, such as the shape 

of the highest-peak flood event, might be hard to capture accurately in the model due to a few patterns in past 

datasets. As a result, the model accuracy in transfer learning was greatly improved in the 1h-lead time from the 

previous study due to the accurate pre-trained model. According to the quantitative evaluation shown in Table 

4, the RMSEs in the 3h-lead time for 40-time retraining were improved by 20–36% reduction from those of no 

pre-trained model in Cases 2 and 3, but the RMSEs in Cases 1 and 4 were slightly worse by 16–20% than those 

of no pre-trained model. For the 1h- and 3h-lead times, the computational cost can be reduced till 2/5 of that of 

no pre-trained model. All predicted flood waves in the 6h lead time were the worst in accuracy (Figure 8). 

Predicted water levels were unstably under- and over-estimated from the observed water levels possibly due to 

the features such as oscillations of wave shapes (i.e., zigzag shapes) from the pre-trained model (Figure 6). Note 
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that for the validation process of four cases, the RMSEs were 0.072–0.082 m in the 1h-lead time, 0.110–0.124 

m in the 3h-lead time, and 0.158–0.181 m in the 6h-lead time, respectively, which were approximately within 

the ranges of the RMSEs predicted by the CNN transfer learning with 40-time retraining (Table 4). 
 

 
Figure 7. Comparisons of the RMSEs without transfer learning (NoTL) and with retraining done by 0 (TL_0th), 10 

(TL_10th), 20 (TL_20th), and 40 (TL_40th) times in transfer learning, in (a) 1h-, (b) 3h-, and (c) 6h-lead times for the 

highest, second-largest, third-largest, and moderate peaks. 60-time retraining (TL_60th) was done only in the 6h-lead 

time. Note that TL = transfer learning. 

 

 
Figure 8. Comparison between observed and predicted water levels. The predictions are shown in the 1h, 3h- and 6h-lead 

times by the retrained model with 40 times in the target watershed. The explanations of (a) to (d) are the same as figure 6. 
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Table 4. Error evaluations of the CNN transfer leaning with 40-time retraining and no pretrained model. 

Case 
RMSE (m) in 

the 1h LT1 

RMSE (m) in 

the 3h LT1 

RMSE (m) in 

the 6h LT1 

RMSE (m) of 

CNN without 

TL2 in the 1h LT 

RMSE (m) of 

CNN without 

TL2 in the 3h LT 

RMSE (m) of 

CNN without 

TL2 in the 6h LT 

Case 1 0.1057 0.1564 0.1633 0.1347 0.1352 0.1731 

Case 2 0.0732 0.1267 0.1945 0.1965 0.1992 0.2188 

Case 3 0.0763 0.1146 0.1819 0.1480 0.1427 0.1622 

Case 4 0.0800 0.1044 0.0842 0.0751 0.0868 0.1334 

1 LT = lead time; 2 TL= transfer learning. 

 

4. CONCLUSIONS 

This study improved and extended the DNN-based flood model with a transfer learning approach, developed in 
the previous study (Kimura et al., 2020), for the model accuracy and longer lead-time prediction. The model 
accuracy was greatly improved by a change of the pre-training datasets with a leave-one-out cross validation. 
The lead time of the model prediction was extended to 6 hours. As a result, the CNN model with the transfer 
learning approach are still beneficial up to the 3h-lead time for accuracy improvement as well as computational-
time reduction when compared with the CNN model without transfer learning. For the model prediction in the 
6h-lead time was poor in accuracy, which indicates that a longer time-series prediction could not be utilized for 
a flood forecast. 
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