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ABSTRACT 

When flooding is expected at a river construction site, workers are able to evacuate to a place of safety within a 
few hours. If heavy machinery and materials are present, several hours are required to ensure safety. One 
responsibility of the construction manager is to make a judgement as to whether evacuation is necessary. 
Recently, a flood forecast system has been developed and applied to river work; based on forecast water levels, 
the man-ager can make a judgement based on personal experience. However, this system has some problems: 
1) tuning of system parameters and the collection and selection of data takes a lot of time; 2) to secure the 
robustness, water levels are predicted by multiple methods and the manager’s judgement may be affected if 
there are discrepancies among the predictions. In this paper, a new forecasting technique for judging whether 
water levels will exceed a ‘flood’ threshold or not is developed using deep learning based on weather forecast 
rain distribution maps. The input data are the center of gravity of rainfall and the amount of rainfall. The method 
is applied to the Abukuma River in Fukushima prefecture and is able to judge flooding in excess of the threshold 
value, giving a correct evaluation rate of 60%. The precision of the judgement can be improved by selecting the 
learning data. This technique is suitable for application to safety management during river construction work. 

Keywords: river construction, safety management, flood prediction, neural network, rain distribution maps 

1. INTRODUCTION 
Extreme natural phenomena such as heavy downpours and extremely hot days are becoming more frequent as 
a result of global warming. For example, if we focus on rainfall, there were about 238 annual occurrences of 
precipitation reaching at least 50 mm per hour between 2008 and 2018 (a 10-year period).  This is about 1.4 
times the average annual frequency between 1976 and 1985 1). More than 10 fatal disasters induced by heavy 
rain, including land-slides and river flooding, have occurred since 2011 as a result of severe weather fronts and 
typhoons 2). Erosion control dams and embankments have been constructed to mitigate disasters caused by 
torrential downpours. However, it is also very important to ensure that torrential downpours do not compromise 
safety during the construction of such infrastructure. In particular, when doing river work, it is necessary not 
only to protect the lives of workers in the case of river flooding during the construction period, but also to 
evacuate construction materials and equipment (construction assets) such as heavy machinery. In our company, 
therefore, the water level at the construction site of the river is predicted in advance, and when the predicted 
water level reaches a ‘dangerous’ level set by the constructor, a flood warning system distributs alerts to the 
parties concerned by e-mail or the Web. Currently, this system is in use for river construction sites3) 4). It 
combines several prediction methods, including a regression model, a numerical model, and a cumulative 
rainfall model. The regression model predicts the water level at 10 or 30 minute intervals based on measured 
water levels upstream from the prediction point. The numerical model and cumulative rainfall model are based 
on from 24 to 72 hours, determined by location, of analysis data (measured values) and forecast values for six 
hours ahead. One of the characteristics of this system is its robustness. For instance, even if one of the prediction 
methods fails due to problems such as the transmission of input data, the system continues to operate with the 
other methods. In applying this system to actual river work, there are found to be discrepancies in predicted 
flood times and water levels, but the system does give advance warning that the water level will exceed the 
critical water level. The system has contributed to safety management during construction3) 4). 
One drawback of the system is that it takes some time and labor to prepare measured values such as water level, 
flow rate and rainfall for use in construction and for the tuning of prediction methods. Further, in some cases 
there may be no observation points for water level and rainfall close to prediction point, or observation stations 
may be closed or under inspection, making measured values unavailable. Even if predictions are available, the 
person in charge of construction needs to determine the propriety and timing of flood control measures at least 
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from 5 to 10 hours in advance based on the outputs of the system and his/her own experience. However, 
predicted water levels vary with the prediction method, so when predictions are close to the danger level, he/she 
may suffer hesitation as to whether or not to proceed with flood control measures (Figure 1).  

In this paper, a deep learning technique to predict flood occurrence using only precipitation distribution maps 
is presented, taking the Abukuma River as a case study of a first class river which is classified in Japan 
designated by the River Law. Predictions made using the technique are compared with observed values; see Fig. 
1 for an example. Using this technique, flood occurrence can be reliably predicted with easily acquired data up 
to several tens of hours ahead. Distribution maps of precipitation are easy to obtain for any region and can be 
compared with actual water level and rainfall observations for the river. Here, analytical rainfall maps provided 
by the Japan Meteorological Agency are used. The maps include the spatial distribution of rainfall intensity 
(GPV data; grid point values data). Maps offered by private weather companies could also be used to this method, 
however the accuracy of such forecasts is not considered here. 

Figure 1.Example of water level prediction results for actual river 

 

2. OVERVIEW OF DEEP LEARNING 

Deep learning (DL) is an extension of the neural network (NN) method. While NN has only one intermediate 
layer, DL has more than two intermediate layers. Both NN and DL use combinations of input and output layers 
(learning data) to determine weighting factors. When new data is presented to the input layer, DL is able to 
obtain results from the output layer (Figure 2). Each layer contains nodes simulating neurons, and the number 
of nodes corresponds to the number of input/output data points stored in the input and output layers, respectively. 
The number of nodes to be set optionally is stored in the intermediate layer. Each node in a layer is coupled 
with all nodes in the neighboring layer (nodes of the input layer are coupled with those of the first intermediate 
layer; the first intermediate layer with the adjacent intermediate layer; the most behind intermediate layer with 
the output layer), and the strength of the coupling is determined by the weighting factor. The node values of the 
intermediate layers and the output layer are calculated using the weighting factors, which are obtained from an 
activation function. The activation function simulates transmission of information from one neuron to another. 
The weighting factors are determined by updating a set number of times (the number of learning cycles) such 
that the difference between the node value of the output layer obtained by the calculation and the node value 
(original value) is minimized. The optimum number of learning cycles differs de-pending on the details and 
conditions of the calculation. But with increasing number of learning cycles, the weighting factor is optimized 
and the calculation result improves8) 9). The greater the number of intermediate layers in DL, the more the 
weighting factor and the calculation time increases. But the node value of the intermediate layer can consolidate 
features of the input layer and output layer numerically and, as a result, the output result often becomes better. 
In this study, we use the zigmoid function as the activation function and the Adam method for updating the 
weightings8) 9).  

Figure 2. Overview of deep learning 
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The study parameters are the total number of intermediate layers (2 and 3), the number of nodes (the same 
number of nodes, 40, as in the input layer and twice that number, or 80 nodes), and the number of learning 
cycles (2,500, 5,000, 7,500 and 10,000) (Table 1). The response rate (percentage of correct answers) was 
obtained by comparing prediction results with measured values. 

Table 2. Calculation conditions for deep learning 

 
3. PREDICTION OF FLOOD OCCURRENCE BY DEEP LEARNING 
3.1 forecasting procedure  
3.1.1  Selection of Prediction Point and Establishment of Catchment Area  

The first step is to select the location of the prediction point and establish the catchment basin for this point. In 
this study, the Ejiri Observatory (Figure 3), which is well downstream on the Abukuma River flowing through 
Miyagi and Fukushima Prefectures, was selected as the prediction point. The catchment of the river at the Ejiri 
Observatory is approximately 4,400 km2. Figure 4 shows the water level history at the Ejiri Observatory from 
2007 to 2018. These water levels are based on hourly observations obtained from the Ministry of Land, 
Infrastructure, Transport and Tourism's hydrological water quality database10). In this study, when water level 
exceeds critical water level, T.P. + 8.0 m and the water level is rising compared to 1 hour ago and 2 hours ago, 
we call it ‘flood’. On the other hand, the water level does not exceed the critical level, we call ‘no flood’(Figure 
5). Using this judgement method, there were 37 flood events at the Ejiri Observatory over the 12 years from 
2007 to 2018.  Here water level from March to May were excluded because there were increasing of water level 
by melt snowy which was caused by temperature. The catchment basin is the upper catchment area including 
Ejiri Observatory, as obtained from "watershed boundary and non-catchment data" (Ministry of Land, 
Infrastructure and Transport) 11)(Figure 3). 

 
Figure 3. Abukuma River and station location                                          Figure 5 Flood Judgement 
 

 
Figure 4. Water level history at Ejiri Observatory 

 

3.1.2  Grayscale Rain Distribution Maps and Obtaining Center of Gravity and Precipitation  

The distribution maps of precipitation indicating actual rainfall intensity were created using rainfall data (on a 
1 km grid) for 12 years (2007-2018) from the Japan Meteorological Agency (leftmost map in Figure 6). Rainfall 
intensity coloring is based on Radar Nowcast12). Next, the Ejiri Observatory catchment was extracted from this 
map (center map in Figure 6). For use in DL, it is necessary to digitize distribution maps, so in this work the 
RGB levels of the maps were converted to luminance (0-255 grayscale) (rightmost map in Fig. 6). We 
considered the use of these obtained grayscale values as DL learning data, but the amount of information per 
map is very large. (For example, a 200 x 200 pixel image has 40,000 data points.) It was considered that 
convergence of the weighting factors would take too long when rain distribution maps covering several years 
are to be learned. So not only a high-specification computer and parallel computing but also long calculation 
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time would be required, but in actual, it will be hard to apply this method for some construction site because . 
Therefore, to express the features of the rain distribution maps with a small amount of data, center of gravity 
information from the catchment basin map was used as representative values for DL. This center of gravity 
information consists of the coordinates of the center of gravity of the rain distribution maps(X, Y), the distance 
from the prediction point to those coordinates (L), and the amount of rainfall (R). The coordinates represent 
distance from the origin, with the lower left corner of the grayscale image as the origin (Fig. 6).  The distance 
to the center of gravity is defined as the squared sum of the barycentric coordinates X and Y. Rainfall is the sum 
of the gray values. The gravity information was created for every hour over the 12 years from 2007 to 2018 at 
the same time points as the water level observations. 

 
Figure 6 Center of gravity calculation 

 

3.1.3  Creating Learning and Test Data 

The full set of data for DL was prepared by combining the occurrence of ‘flood’ water levels determined by the 
method in Fig. 5 with the center of gravity information for the 5~14 hours before the water level observation 
time point. Learning data and data used for prediction (test data) were prepared from this full data set. The 
prediction of flood by this method is every 1 year, and the test data used for the predictions was extracted from 
the full data set. The learning data is obtained by removing the test data from the full data set. Based on the full 
data set, the test data and learning data were classified. In preparing the data for DL, any missing observations 
by the Ejiri observatory were excluded; the timing of missed observations differed by year. After data 
preparation, the total number of data points was 105,195. The test data accounted for 8,183 to 8,770 points, and 
the learning data was 94,555 to 95,142 points. The number of ‘flood’ data points was 359, accounting for 0.35% 
of the total. The accumulation time of the center of gravity information (from 5 to 14 hours in advance of a time 
‘flood’ occurred) was determined from water levels at the Ejiri observatory10) and precipitation at two points 
(the Fukushima Observatory and the Yawata Observatory (Fig. 3))10). The time delay between the start of rainfall, 
peak rainfall and the time point at which the Ejiri Observatory water level exceeded the dangerous level (T.P. + 
8 m) was examined for all 37 flood events (Fig. 7). The average of these time de-lays was 14 hours and 5 hours, 
and this determined the accumulation time of 5?14 hours before (a period of 10 hours). This also means that by 
using center of gravity information from 5~14 hours ago, upcoming water levels can be predicted 5 hours ahead 
from the time of the latest rain distribution maps.  
 

Figure 7 Rainfall and water level at Ejiri Observatory 

3.1.4   Prediction of flood occurrence and compilation of results 
The weighting factors for DL were calculated from the learning data, and then the occurrence of flooding in 
each year from 2007 to 2018 was predicted. In compiling the results, the time discrepancy between the predicted 
time of ‘flood’ and the actual time of a ‘flood’ observation was examined in the range of up to 24 hours and 
totaled. An example of the results is shown in Fig. 8 (a). Here, the actual ‘flood’ period began at 14:00, but the 
predictions made after 5000 and 7500 learning cycles indicate ‘flood’ at 15:00, which is an hour late. In the case 
of 10,000 learning cycles, the predicted time was 13:00, one hour early. With 2,500 learning cycles, the 
prediction failed (because water level exceeded critical level called ‘flood’, but the method predicted ‘no flood’). 
In this study, this results was called 'Miss'. Figure 8 (b) shows an example of a ‘Swing’, in which no flood 
actually occurred but the technique predicted ‘flood’. 

Length

Gravity（X,Y）

origin

mm/h

Distribution map of precipitation
Gray scale map

Distribution map
for catchment basin

0

5

10

15

20

25

30

35

404

6

8

10

12

10/5 10/5 10/6 10/6 10/7 10/7 10/8

14hours from the start of rainfall to the flood

5hours from the peak of 
rainfall to the flod

W
at

er
le

ve
l o

fo
bs

er
va

to
ry
（

T.
P.

m
）

Ra
in

fa
ll（

m
m

/h
）

●：Waterlevel(Ejiri)

●：Rainfall(Fukushima)

●：Rainfall(Yahata)

2014/



5 

 
(a) Flood predictions and failure to predict                                 (b) Flood predicted but not occur 

Figure 8 Examples of prediction results 
 

3.2 prediction result 
Figure 9 shows the time discrepancy results and learning frequency for prediction failure, ‘swing’ and ‘flood’. 
Here, ±0 h means predicted and actual times were the same, the minus sign (-) means the prediction was earlier 
than the actual flood time, and the plus sign (+) indicates the prediction was later than the actual flood. Figure 
9(a) is a number of predicted result and (b) shows rate of (a). 
With increasing learning cycles, number of intermediate layers, and number of nodes, the number of prediction 
failures ‘miss’ decreased while ‘flood’ and ‘swing’ results increased. This is thought to be because the weighting 
factors are optimized with more learning and the sensitivity to test data increases. A time discrepancy of 0h to 
±3h for a ‘flood’ occurred in 22-34% of cases(Figure 9 (a)①⑩⑯). If time discrepancy is disregarded, ‘flood’ 
was predicted correctly in 35-56% of cases(Figure 9 (a)①⑪). Moreover, the percentage of ‘swing’ increased 
and the percentage of failure to predict decreased. The combined percentage of these two results was 36-
65%(Figure 9 (a)①⑧). 

 
(a) Numbers  

 
(b) Rate 

Figure 9 Aggregation results 
 
As to the reasons for obtaining 50% failure and ‘swing’ results even as the number of learning cycles increased, 
one explanation is that the center of gravity information would be identical even for different rainfall 
distributions. For example, Fig. 10 shows uniform rainfall occurred over the entire catchment area (Fig. 10 (a)) 
and localized torrential rain occurred in the catchment (Fig. 10 (b)). The position of the center of gravity, the 
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distance to the center of gravity, and the amount of precipitation are almost the same in the two cases. When 
very heavy local rainfall occurs, it may exceed the soil’s recharge capacity and rainwater rapidly flows over the 
surface into rivers, causing water levels to rise and an increased discharge. Therefore, it was suspected that the 
test data at the time of flooding was similar to the learning data of "no flood " and predicted that "miss". 
In order to consider the rainfall distribution with method, the map was segmented using a grid for calculation 
of center of gravity. Learning data and test data were created by combining center of gravity information for 
each segmented area. 

 
(a) uniform rainfall      (b) localized torrential rain 

Figure 10 Rainfall patterns and center of gravity 
 

3.3 prediction by image segmentation 
3.3.1  Summary 
The distribution maps of precipitation were segmented into four parts (Fig. 11). The prediction method is as de-
scribed in section 3(1) above. Since the number of nodes in the input layer has been increased by segmentation, 
the number of nodes in the intermediate layers was also increased to 160, which is equal to the number of nodes 
in the input layer, and doubled to 320 nodes. 

 
(a) no segmentation                       (b) 4 segments 

Figure 11 Center of gravity 
 

3.3.2  Prediction Result 
Figure 12 shows the aggregated predictions. Compared with Figure 9. Predicted results ‘flood’ with intermediate 
layer 2 are increased(①～⑧). For a given number of learning cycles, the number of failures to predict a flood 
is fewer. It can be said that image segmentation with intermediate layer 2 has improved prediction accuracy. 
The percentage of correctly predicted ‘flood’ events 27% (Figure 12 (b) ⑤) to 40% (Figure 12 (a) ③⑧) with 
a 0h to ±3h time discrepancy, and 51% (Figure 12 (b) ④) to 60% (Figure 12 (a) ⑥) regardless of the time 
discrepancy, suggesting that it was equivalent to the not segmented case (Figure 9). But with intermediate layer 
3, ‘flood’ results are decreased(⑨～⑯) compared to not segmented case. Especially,  in the case of 2500 cycles 
with intermediate layer 3 and node number double input, number of failures has increased. This is because the 
amount of learning data increased 4 times and the weighting coefficients failed to optimize. In addition, the 
number of nodes and the number of weights increased because the number of intermediate layers was increased 
from two to three. 

The results that could not be predicted were common to the seven events. Therefore, it was predicted excluding 
these seven events with intermediate layer 2 of not segments case. As a result, the prediction results improved 
and ‘flood’ results are increased(Figure 13 (a)(b)). The percentage of ‘flood’ events over 65% with a 0h to ±3h 
time discrepancy(Figure 13 (b)). From this, it was thought that prediction accuracy has decreased due to 
unlearned learning and the prediction result improved by increasing the learning data. 
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(a) Numbers 

 
Figure 12 Aggregation results(4 segments) 

 

 
(a) Numbers                                                                           (b) Rate 
Figure 13 Aggregation results(not segments and excluding 7 events) 

 

4. EFFECTIVENESS WHEN APPLIED TO RIVER WORKS 
First, since predictions of ‘flood’ and ‘no flood’ can be derived using only distribution maps of precipitation, 
this method is available after only a short preparation period. Using results as shown in Fig. 1, there is no 
hesitation in deciding whether or not to take countermeasures against inundation. 

Second, there is a possibility that any result other than a failed prediction can be used for safety management. 
A ‘flood’ result can be reliably obtained using rain distribution maps prepared from weather forecasts 12 to 3 
hours ahead with segmentation into four divisions and 5,000 learning cycles (Fig. 14). The occurrence or non-
occurrence of flooding can be predicted 17 hours ahead of the present time, while the time discrepancy between 
actual flooding and the prediction is -8 to + 15 hours when the map is segmented into four and there are 1,000 
learning cycles. Therefore, even if flooding were to occur 8 hours earlier than the predicted time (-8 hours), this 
is still 9 hours ahead of the time when the prediction is made. This early prediction of ‘flood’ is effective for 
alerting construction workers. In fact, the time difference of ± 0 ~ 3 hours is considered to be within the 
allowable range when the person in charge judges the propriety of flood control measures. A ‘swing’ result 
serves as a reminder when water levels rise close to the dangerous level, but a ‘swing’ when there is no water 
level rise means a failed prediction. However, for example, even if there are 3 ‘swing’ events over a 12 year 
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period, the annual average is 0.25. Even if flood control measures taken in response are in vain, this may be 
considered acceptable given the number of times that flooding causes human and property damage. Based on 
the above, it is possible to consider that maximum60% (Figure 12 (b)⑥) is valid when only ‘flood’ is allowed, 
and maximum63% (Figure 12 (a) (4)) is valid when only ‘flood’ and ‘swing’ are allowed, depending on 
the approach taken when introducing this method. Further, using this method in combination with other 
prediction methods may allow the efficient and effective imposition of safety measures. For example, minimum 
flood countermeasures may be put in place when this method predicts ‘flood’ and then choosing other 
countermeasures according to the scale of flooding indicated by other water level predictions. 

 
Figure 14 Prediction using weather forecast 12 hours ahead 

 

5. CONCLUSIONS 

Deep learning was used to predict the occurrence of flooding along the Abukuma River using only spatial 
distribution maps of precipitation. The predictions were compared with measured values of water levels. The 
maps were converted into a grey scale according to luminous and the center of gravity of the luminous was 
obtained both for the whole map and for the map segmented into four. Learning data was obtained by combining 
this with the amount of rainfall and observed ‘flood’ or ‘not food’ occurrences. Flood events for the river were 
then predicted and the results com-pared with the 37 actual observed floods. With increasing map segmentation, 
learning cycles and intermediate layers, prediction accuracy improved. With sufficient learning cycles, a high 
percentage of ‘flood’ events was correctly predicted. And it was indicated to decrease frailer when learning data 
are increased. Using this method, predictions can be made a considerable time in advance from rain distribution 
maps from weather forecasts, contributing to the management of safety during river works.  
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