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ABSTRACT 

The IPCC (Intergovernmental Panel on Climate Change) Fifth Assessment Report leaves no doubt that the 
climate system is warming, and extreme rainfall events might be more severe and more frequent in most mid-
latitude land areas. A high likelihood is predicated for the above situation. In August 2016, three typhoons 
successively made landfall in Hokkaido, Japan, and heavy rains fell in various places. As a result, rivers flooded 
and sediment disasters occurred, mainly in eastern Hokkaido. Recently, there is the concern that the impact of 
such climate changes will become apparent. In light of this, flood control measures considering future climate 
change are required in Japan. Current flood control plans have safety levels that are based on limited observation 
data from the past several decades to a maximum of about 100 years. It is essential to utilize climate projections 
data to respond to events occurring under future climate change. In this study, we estimated the annual maximum 
average rainfall per basin from the output rainfall of a climate model using d4PDF, which is a massive ensemble 
of climate projections. Moreover, we proposed methods to evaluate the accuracy of this model and to calculate 
rainfall probability considering the range of uncertainty. The projection data of past climate were found to 
closely reproduce the observed values. In addition, 1/150 annual exceedance probability (AEP) rainfall has 
uncertainty: The range will be about 170mm/72hr under the current climate and about 260mm/72hr under the 
future climate. In the case of a GEV distribution, it became clear that the median of 1/150 AEP rainfall will be 
about 1.4 times the current rainfall in the future assuming the scenario of RCP8.5. 
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1. INTRODUCTION 
In the Hokkaido Heavy Rainfall Disaster of August 2016, three typhoons made landfall in a week in Hokkaido, 
Japan. It was the first recorded occurrence of three typhoons in a single week there, and new rainfall records 
were set in many areas of Hokkaido. According to the IPCC Fifth Assessment Report (IPCC, 2014), extreme 
rainfall events are very likely to be more severe and more frequent in most mid-latitude land areas by the end 
of this century. In light of this, the Hokkaido Government and the Hokkaido Regional Development Bureau of 
the Ministry of Land, Infrastructure, Transport and Tourism (MLIT) of Japan established a committee on climate 
change that noted the need for scientific predictions of the future effects of climate change, and the planning of 
flood management policy to address such change. 

Policy-makers have been setting the safety level of flood control based on probable rainfall calculated from past 
observation data. However, the utilization of climate projection data is indispensable for promoting flood control 
measures under the future climate. To estimate the probable rainfall for once in several hundred years, which is 
the target of flood control measures, large amounts of experimental data, including low-frequency and high-
intensity rainfall cases, are required for the climate model. At present, the results of such a massive ensemble 
experiment were made open to the public as the “database for Policy Decision making for Future climate change 
(d4PDF)” by the Ministry of Education, Culture, Sports, Science and Technology’s Climate Change Risk 
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Information Creation Program, and it became possible to discuss the reproduction and change of extreme 
weather based on the probability density distribution (Mizuta et al., 2016).  
Studies have been carried out to estimate the annual maximum rainfall from the d4PDF, and to estimate the 
probable rainfall under the future climate (Tanaka et al., 2017; Tachikawa et al., 2017). However, no bias 
correction method for the massive ensemble data has been established, and little confirmation has been made 
on how closely the estimated annual maximum rainfall reproduces the actual annual maximum rainfall. The 
d4PDF regional model has a horizontal resolution of 20km, but it has been pointed out that the reproducibility 
of high-intensity hourly rainfall differs depending on the model resolution (Sasaki et al., 2011). To estimate the 
probable rainfall on the scale of the river basin in Hokkaido region, verification with a higher-resolution climate 
model is necessary. 
In addition, the rainfall output from climate models varies as a result of uncertainties due to boundary conditions, 
initial conditions, and nonlinearities inherent in the climate system, so it is necessary to consider the possible 
range of stochastic rainfall using large ensemble data. By using rainfall data from the d4PDF, the ranges of 
probable rainfall have been shown for the past climate and the future climate. Tachikawa et al. (2017) estimated 
the range based on the treatment of the past 3,000 years as one sample and the future 900 years for each of six 
sea surface temperature (SST) patterns as another sample. Tanaka et al. (2017) estimated the 95% confidence 
interval of the probable rainfall by a method using variance and the likelihood profile, based on each group of 
ensemble members (60 years) as 1 sample. Kitano et al. (2017) assumed that the distribution of the probable 
rainfall from each group of ensemble members of past experiments appears as that of the probable rainfall that 
actually occurred, and they showed the distribution in which the probable rainfall could be obtained by the 
gamma distribution. In contrast, from the viewpoint of flood control planning, the relationship between the 
range of model uncertainty and the probability of rainfall calculated from observation results has not been 
discussed. 

In this study, toward applying climate projection data to flood control measures, we used massive ensemble 
climate projection data and 5km-mesh data to which it was downscaled to determine how well the climate model 
reproduces the observation data. Additionally, we estimated the uncertainty of probable rainfall by using a 
method that enables climate projection data to be compared to observation data. Finally, we discuss uncertainty 
with respect to the development of flood control measures that address climate change. This study was 
conducted and verified by the Technical Review Committee on Climate Change Projections (water field) in 
Hokkaido Region, which was established by the Hokkaido Regional Development Bureau of the MLIT (2018). 

2. METHOD 
2.1 Target area 

The target area is the Tokachi river basin in eastern Hokkaido, Japan. This catchment measures 2,678km2. This 
area suffered severe damage from the Hokkaido Heavy Rainfall Disaster of August 2016. The annual maximum 
rainfall was calculated from the depth of rainfall averaged over the watershed area whose downstream end 
includes the Obihiro observation site (Figure 1). This site is in the largest urban area of the eastern Hokkaido 
region. The rainfall duration was 72 hours in this watershed, which were set in consideration of the flood arrival 
time under the current flood control plan. 

2.2 Rainfall data 

2.2.1 Climate projection data 

As rainfall data, we used the output values from the regional climate model (RCM20) provided by d4PDF. The 
grid size of RCM20 is 20km. We used the two datasets of the past and future massive ensemble projections 
provided by d4PDF. The past experiment is 60 years (1951–2010) × 50 ensemble members, so the total period 
of the climate simulation is 3,000 years. The future experiment is 60 years (equivalent to 2090 in the RCP 8.5 

Figure 1. The overview of target basin 
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scenario) × 6 SST patterns × 15 ensemble members, so the total period of the climate simulation is 5,400 years. 
The RCP 8.5 scenario is the worst case of the four climate change scenarios presented in the IPCC Fifth 
Assessment Report: It assumes warming of 4℃ by 2090. 
In addition, for rainfall data we also used the dynamical downscaling model (RCM5) (Yamada et al., 2018) 
from RCM20, in order to reproduce rainfall events for the target basin in more detail. The grid size of RCM5 is 
5km. The simulation of the dynamical downscaling to RCM5 set the calculation area and period as follows, in 
order to efficiently extract the data of massive rainfall events. 
1. The calculation area is the latitude and longitude range of 800km with 142.5E and 42.75N as a center. In 

consideration of the development of typhoons over the Pacific Ocean, it set more toward the area south of 
Hokkaido. 

2. The calculation period was set as the 5 days before and after the rainfall event, with 5 days as the 
preconditioning term, making a total of 15 days. The date of the rainfall event was set from the occurrence 
time of the annual maximum rainfall event in the rainfall data in RCM20. 

The estimation of probable rainfall requires annual maximum rainfall. Thus, the maximum of the accumulated 
rainfall within the duration of rainfall was estimated, and sample datasets of annual maximum rainfall were 
made for both models. The hourly rainfall of each case was weighted by the area of each mesh of the climate 
model as a share of the target basin. The date of occurrence of the annual maximum rainfall for RCM20 was 
utilized to set the calculation period for downscaling. 
RCM5 was simulated using the Earth Simulator supercomputer of Japan Agency for Marine-Earth Science and 
Technology (JAMSTEC), Japan. This simulation was carried out with the help of “Assessment of changes in 
flood risk due to climate change in Hokkaido,” an earth simulator special promotion program from 2017 in 
Japan. Both models use the non-hydrostatic regional climate model (NHRCM), which is the latest climate model 
provided by the Meteorological Research Institute, and both are characterized by the use of MRI/JMA-SiB as 
the land surface model for long-time integration. 

2.2.2 Observation data 

The observation value for rainfall was calculated based on the hourly rainfall data of the ground station in the 
target basin. The duration of data collection was 60 years (1951–2010), it matches the duration of the past 
experiment on the climate model. The number of stations used varies from year to year with the establishment 
or closure of stations, but in 2010 there were 30 stations. From the hourly rainfall data of each station, the basin 
average hourly rainfall was calculated by the Thiessen method, and the annual maximum rainfall within the 
duration of rainfall was calculated. 
2.3 Bias correction 

The bias correction is based on Piani’s method (Piani et al., 2010) applied to rainfall data of NHRCM in 
Meteorological Research Institute Technical Report No.73 (2015). In this method, the bias is corrected by the 
linear equation of the relational expression y = ax + b, and the numerical value is easy to handle. The coefficients 
are calculated from the regression formula by the least squares method. The formula is made by sorting model 
values and observation values in ascending or descending order, and plotting the model values on the x axis and 
the observation values of corresponding ranks on the y axis (Figure 2).  
In this study, to take into account the characteristics of the data, we revised Piani’s method as follows. 
1. The corrected annual maximum value must be positive, so the regression formula was altered to y = ax (b 

= 0)  
2. So that the massive ensemble data would correspond to the observation data, whose number of samples is 

limited, a regression formula was made for every 50 ensemble members from the past experiment. The 
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coefficient “a” in the regression formula for each member was averaged for use as the coefficient of the 
correction expression. 

2.4 Estimation of probable rainfall 

The probable rainfall was analyzed by using the extreme value statistics. For the distribution function, we used 
a Gumbel distribution and a GEV (generalized extreme value) distribution, because flood control plans in Japan 
often use these distributions. SLSC shows the goodness of fit of the distribution function to the sample group 
(Takara and Takasao, 1988). The model calculated that SLSCs above 0.04 are not good fits. In this study, the 
evaluation by SLSC excluded some cases in which the SLSC was above 0.04 from the estimation of the probable 
rainfall. 

2.4.1 Resampling 

In this study, we estimated the uncertainty of the rainfall by using a resampling method. It estimated the possible 
range of probable rainfall in the case of 60 years of rainfall data being available as the uncertainty of the rainfall. 
1. Past experiments 

The sea surface temperatures of past experiments are the output values from the climate model using 
observation data as boundary conditions. Therefore, the method randomly sampled one case of the annual 
maximum rainfall from ensemble members of each year, and made sample rainfall that is the annual 
maximum rainfall of 60 years from 1952 to 2010. For example, the method first sampled one case from 50 
ensemble members of 1951, then one case from 50 ensemble members of 1952, and repeated the sampling 
until 2010. This method made for 100,000 samples, and the probability evaluation was carried out for each 
sample. 

2. 4℃ warming experiments 
The SST in the 4 °C warming experiment has 6 patterns, therefore Tachikawa et al. (2017) considered the 
uncertainty of the rainfall for each SST pattern. In contrast, in this study, under the assumption that each 
SST has an equal probably of occurring, the resampling method randomly sampled 60 cases from the 5,400 
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Figure 3. The distribution of the probable rainfall 
(a: Left) A comparison of RCM20 and RCM5 uncorrected data. (b: Right) A comparison of corrected and uncorrected 
RCM5 data. (Freq.: Frequency, Obs.: Observation data) 
 

Table 1. The distribution of probable rainfall 
(a: left) A comparison of rainfall for RCM20 and RCM5 uncorrected data. (b: right) A comparison of the cumulative 
frequency for corrected and uncorrected of RCM5 data. 
 
(a) 

 Obs. RCM20 RCM5 
Max 283.8 340.1 (56.3) 439.6 (155.8) 

99.3%ile 248.1 214.1 (-34.0) 248.3 (0.2) 
99%ile 230.3 203.0 (-27.3) 239.0 (8.7) 
95%ile 167.4 150.9 (-16.5) 178.6 (11.2) 
50%ile 88.2 79.3 (-8.9) 87.2 (-1.0) 

Min 36.5 32.3 (-4.2) 5.0 (-31.5) 
Obs.: Observation data 

(b) 
Rainfall 
(mm) 

Cumulative Frequency (RCM5) 
Obs. Uncorrected Corrected 

40 2% 3% (1) 4% (2) 
50 2% 9% (7) 9% (7) 
60 10% 17% (7) 18% (8) 
70 20% 29% (9) 30% (10) 
80 35% 42% (7) 43% (8) 
90 52% 52% (0) 53% (1) 

100 60% 61% (1) 62% (2) 
110 72% 69% (-3) 70% (-2) 
120 83% 76% (-7) 77% (-6) 
130 85% 82% (-3) 82% (-3) 
140 90% 86% (-4) 87% (-3) 

Average  (1)  (2) 
Obs.: Observation data   
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cases of annual maximum rainfall regardless of the SST pattern or year. As in past experiments, we 
generated 100,000 samples by this method, and carried out the probability evaluation for each sample.  

3. Results 

3.1 Accuracy of the climate model 

3.1.1 Horizontal resolution of climate models 
Figure 3(a) show the relative frequency distribution of the annual maximum rainfall for the RCM20 and the 
RCM5. Table 1(a) shows the percentile value for each model and the difference from the actual rainfall. The 
absolute value of the difference from the actual rainfall is smaller in the RCM5 than in the RCM20. At the 99.3 
percentile value (annual probability of exceeding 1/150), the change in resolution resulted in a decrease in actual 
rainfall from -34.0mm to 0.2mm/72hr. These results confirm that downscaling to the high-resolution model 
improved the reproducibility of the frequency distribution of actual rainfall.  

From Table 1(a), the maximum values from the climate model were greater after downscaling, and these values 
included low-frequency and high-intensity rainfall events. These extreme values are important for greater 
accuracy in probability analysis. In contrast, the RCM5 data included some cases whose rainfall was several 
millimeters. The calculation period for each RCM5 dataset is 15 days set in the reference to the time when the 
annual maximum rainfall occurs in the RCM20 data. For this reason, it is assumed that, in some cases, rainfall 
does not occur within the calculation period in the target area due to the spatiotemporal variation of rainfall 
before and after the downscaling.  
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Figure 4. Estimation of probable rainfall in the case of the past experiment 
(a: left) the Gumbel distribution, (b: right) the GEV distribution 
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3.1.2 Bias correction 

Figure 3(b) show the relative frequency distribution of the annual maximum rainfall for the RCM5 data before 
and after bias correction. Table 1(b) shows the difference of the cumulative relative frequency from the actual 
rainfall before and after bias correction for each model. The cumulative relative frequency was calculated for 
each 10-mm class. The correction coefficient is close to 1.0 for both models in the target area. Specifically, the 
correction coefficients were a = 0.99 for the RCM5 data and a = 1.14 for the RCM20 data. This result showed 
that even the un-corrected data are able to closely reproduce the frequency distribution of the actual rainfall. In 
the RCM20 data, the difference of the cumulative relative frequency from the actual rainfall decreased from an 
average of 8 points to an average of 2 points after bias correction. These results confirmed that the bias correction 
improved the reproducibility of the frequency distribution for the actual rainfall. 
In addition, this study applied a simple method in which the correction formula has one coefficient. 
Consequently, it is possible that some classes of rainfall were not corrected, because the coefficient a is 
uniformly multiplied by the model value. From the RCM5 data in Table 1(b), it was not confirmed that the 
correction formula removed the difference in cumulative relative frequency from the actual rainfall in some 
classes of rainfall. In cases when the frequency of actual rainfall deviates remarkably for a part of the class and 
the difference in cumulative relative frequency from the model value is large, correction of the relational formula 
in this study has a limit. Therefore, attention should be given to the application of this method, because a 
deviation of the frequency distribution is likely to occur in watersheds with limited observed rainfall datapoints.  
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Figure 7. Frequency distribution of 1/150 AEP rainfall 
(a: left) the Gumbel distribution, (b: right) the GEV distribution 

 

Figure 6. Estimation of probable rainfall in the case of the past and the future experiments by using a resampling method 
(a: left) the Gumbel distribution, (b: right) the GEV distribution 

  Freq.   Cummulative Freq.
Past experiment
4℃ warming experimnet

(a)                                                                                             (b) 



7 

3.2 Uncertainty of rainfall 

3.2.1 Case 1: 50 ensembles 

Figure 4 (a) and (b) shows the result of the case that estimated the probable rainfall each ensemble members at 
past experiments. The evaluation by SLSC excluded total 12 cases in the case of the Gumbel distribution, and 
total 3 cases in the case of the GEV distribution from 50 ensemble patterns. The SLSC of these cases were 
above 0.04. The range of the 1/150 annual exceedance probability (AEP) is between 183 and 286mm/72hr in 
the case of the Gumbel distribution and 180 and 416mm/72hr in the case of the GEV distribution. The 1/150 
AEP of the observation rainfall is 226mm/72hr in the case of the Gumbel distribution and 266mm/72hr in the 
case of the GEV distribution. 
Figure 5 (a) and (b) shows the distribution of 1/150 AEP from 50 ensemble patterns. In the estimation of the 
probable rainfall for each ensemble members, it confirmed the unevenness of the distribution. 

3.2.2 Case2: Resampling 

To make it easier to visually compare the range of probable rainfall in the past experiments to that in the 4 °C 
warming experiments, we calculated the frequency distribution of probable rainfall by using a resampling 
method. Figure 6 (a) and (b) show the results for the case in which the probable rainfall was estimated for each 
sample in the past climate and future climate experiments. The case in which the SLSC exceeded 0.04 in the 
probability evaluation for 100,000 samples was excluded in the preparation of probable rainfall distribution. 
The range of the 1/150 AEP is between 199 and 282mm/72hr in the case of the Gumbel distribution and 
between 193 and 359mm/72hr in the case of the GEV distribution. The 1/150 AEP of the observed rainfall is 
226mm/72hr in the case of the Gumbel distribution and 266mm/72hr in the case of the GEV distribution. For 
both the Gumbel distribution and the GEV distribution, the range of the AEP from the climate model included 
the AEP from the observation data. The result shows that this climate model closely reproduces the 
observation data for the roughly 60 years of available data. 
Regarding the median value and the 95% confidence interval, the distribution of probable rainfall from the 
probability evaluation of ensemble members and the distribution of the probable rainfall from samples prepared 
by using the resampling method roughly coincide with each other (Figure 5 (a), (b)). Therefore, in estimating 
the change of the probable rainfall in the 4℃ warming experiments, we applied the resampling method.  
3.3 Change of probable rainfall in future climate 

For past experiments and 4 ° C warming experiments, the distribution of probable rainfall of 100,000 samples 
made by resampling was compared. The 95% confidence interval of the Gumbel distribution became 199–
282mm per 72 hours in the past experiment and 260–380mm/72hr in the 4°C warming experiment, when 
1/150 probable rainfall (Figure 6 (a), (b)) at the Obihiro observation site was observed. Median values of the 
past experiment and the 4°C warming experiment were 237mm/72hr and 316mm/72hr (Figure 7 (a), (b)), 
respectively, and the values for the 4°C warming experiment were about 1.33 times as great as those of the 
past experiment. In contrast, the 95% confidence interval of the GEV distribution was 193–359mm/72hr in the 
past experiment and 259–520mm/72hr in the 4°C warming experiment. Median values of the past experiment 
and the 4°C warming experiment were 261mm/72hr and 357mm/72hr, respectively, and the values in the 4°C 
warming experiment were about 1.37 times as large as those in the past experiment.  

4. DISCUSSION 

The range of probable rainfall as determined by the resampling method showed the difference from sample to 
sample. These differences occur as a result of initial conditions and boundary conditions such as SST. Thus it 
is possible to regard this range as the potential value of probable rainfall when weather periods of about 60 
years were repeated many times. In this study, the range of the AEP from past experiment models included the 
AEP from the observation data. Not only does this result show that the climate model has good 
reproducibility, but it also shows that it is possible that the probable rainfall from observations has become 
large or small. We would like to emphasize that the past observations are just some of the many possibilities 
that could have occurred. Therefore, when flood control plans are developed in the future, we need to take into 
account the uncertainty of the observation data.  
Gumbel and GEV differ in terms of the number of parameters. The Gumbel distribution has two parameters, 
whereas the GEV distribution has three parameters. Thus, in the GEV distribution, the extreme distribution 
model better fit the extreme values contained in the sample. For this reason, the 95% confidence interval of the 
GEV distribution is wider than that of the Gumbel distribution. This result indicates that the selection of the 
extreme distribution model makes a big difference in flood control planning. 
When we compare the results of the past experiment to those of the 4 °C warming experiment, we find that the 
distribution of probability rainfall of the same scale overlaps in both probability distributions. It is indicated that 
rainfall events that are expected to occur in the future climate may well occur in the current climate. In addition, 
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when developing future flood control plans, there are various methods of setting the planned rainfall from the 
range of the probable rainfall. For instance, policy-makers consider the uncertainty as risk, and they can select 
the maximum or median, etc. within the range of the probable rainfall as the target. In this regard, our approach 
that indicate the width of probable rainfall will contribute to the development of flood control plans. 

5. CONCLUSIONS 

In this study, to assist in the development of flood control plans considering climate change, this paper presented 
an evaluation method for probable rainfall considering uncertainty based on massive ensemble climate 
projection data and used the method to determine the change of probable rainfall under the future climate. 
The main results of this study are listed below. 
1. It was confirmed that downscaling to RCM5 achieved greater reproducibility of the observation rainfall. In 

addition, it was confirmed that RCM5 after downscaling includes cases of low-frequency and high-intensity 
rainfall. 

2. The range of the probable rainfall calculated from the past experiment model included the probable rainfall 
calculated from the observation rainfall. 

3. The median value of 1/150 annual exceedance probability rainfall in the Obihiro-upper basin of the Tokachi 
River in the 4℃ warming experiment is about 1.33 times that of the past experiment in the Gumbel 
distribution and about 1.37 times that of the past experiment in the GEV distribution. 

4. By showing the possible range of the probable rainfall, it becomes possible to select the target of rainfall 
considering both the current climate and the future climate after warming of 4℃. 
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