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ABSTRACT 

Before the middle of 19th century, discontinuous levee system was commonly adopted in Japan to control 

river inundations. In this study, the construction process and hydraulic function of the discontinuous levees 

which were gradually developed on the Kurobe Alluvial Fan during the late 17th and early 19th centuries 

were investigated being based on old map analysis and numerical flow simulations. The distortion of pictorial 

map drawn in 1875 was corrected from comparison with the modern map of 1910, and the levee layout in the 

former was determined. The result clarified that the early fragmentary levees were integrated to the large levee 

system in the early 19th century and that the early levees were placed mainly on the two sections where the 

river tended to change its course due to the long-term geomorphological movement; one was near the fan top, 

and the other was around “the geomorphological nodal point” on the middle of slope of the dissected alluvial 

fan. The results of numerical flow simulation for the levee arrangement in the early 19th century clarified that 

an exceeding flood was diverted to the old river channels beside the main channel through “simple levee 

openings” upstream from the geomorphological nodal point and that a part of diverted flow was returned to 

the main channel through “funnel-shape levee openings” located on the lower river reach. This fact suggests 

that the civil engineers of those days knew the geomorphological characteristics of the alluvial fan. 
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1. INTRODUCTION 

In early modern age of Japan (from the 17th to the mid-19th centuries), when hard, continuous levees were not 

built, a variety of discontinuous levee systems were employed to control river flooding. The systems often 

functioned well to control floods exceeding a channel capacity (e.g., Ishikawa and Akoh, 2019). The 

technology of levee design in those days could help flood disaster prevention works in the near future, when 

the exceeding floods will become more frequent due to the global climate change. However, the scope of 

knowledge and the strategy of levee design at that time was not completely clarified. In this study, the 

construction process and hydraulic function of the discontinuous levees which were gradually developed on 

the Kurobe Alluvial Fan during the late 18th and early 19th centuries were investigated being based on old 

map analysis and numerical flow simulations. 

Three old maps were analyzed to determine the old levee locations. The first was a pictorial map drawn in 
1785 (Kurobe Construction Office, Ministry of Construction, 1977), in which the major streams and the levees 
were marked together with the locations of villages. The second was a modern map published in 1910, in 
which the villages having the same names as shown in the former were plotted. The third was a levee layout 
surveyed in the late 19th century under the guidance of a Dutch engineer, which is owned by Toyama 
Prefectural Library now. Based on geometrical correlation among them, the levee positions were plotted on 
the latest GIS map. 

Numerical flow simulations using shallow water model were conducted for three conditions of levee 

arrangement: no-levee condition, the group of fragmentary levees of 18th century and the final levee system in 

the 19th century. The topographic condition for all cases was assumed to be the same as the present one due to 

the lack of old days data. For the numerical flow simulations, the past maximum flood hydrograph observed in 

1969 was reduced to two flood hydrographs the return period of which are 10 and 20 years by considering the 

flood scale for river planning of the old days. Flow fields obtained from the three cases were compared to 

estimate the hydraulic function of the levee system, and the flood control strategy of those days was discussed. 
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2. STUDY SITE DESCRIPTION 

2.1 Topography of Kurobe Alluvial Fan  

The Kurobe Alluvial Fan is a dissected fan formed by the Kurobe River, which flows down a distance of 85 
km from the central mountain range of 3,000 meters high to the Japan Sea Coast, carrying a large volume of 
sediment from the canyon. The Kurobe Alluvial Fan has a radius of 13 km and an average slope of 1/100 (see 
Figure 1). The sky-blue bands in the figure represent the old river courses, which tend to branch in the middle 
of the fan as well as near the top of fan.  

The contour lines are beautifully concentric, although the coastline was distorted by erosion and sedimentation 
in the north and the west parts, respectively after the river changed its course form the north to the west in the 
mid-16th century. The J, M and F-planes with coloured open arrows are the remains of old fans. Short black 
lines at the both sides of the present river course represent the levee locations measured at the end of the 19th 
century. It should be noted that the upstream section has a lot of simple levee openings, whereas the 
downstream has a series of funnel shape levees which open toward upstream. The meaning of this difference 
will be discussed later. 

 
Figure 1. Contour map of the Kurobe Alluvial Fan 

2.2 Long-term geomorphological motion  

Slope profiles of those fans from the present fan top are plotted in Figure 2, where P-plane is the present one, 
and others are remains of old fans. Carbon-14 dating showed that the fan plane formation was J → M → F → 
P, which coincides with the order of slope degrees. This fact means that the ground of this area has been 
tilting with time; the mountain side rising, and the seaside sinking. According to various field data, such as the 
rate of ground rising/sinking, the sea surface change after the Ice Age and the unconformity under the seabed, 
the variation from F-plane to P-plane has continued for the last 10,000 years, though those data are not 
presented here for restriction of space. The lines of F- and P-planes intersect in the middle of the present fan, 
which means that erosion occurred on the upper and deposition on the lower half of fan. This 
geomorphological motion was the cause of the river course changes in the middle of present alluvial fan. 

 
Figure 2. Slope profiles of old and present fans 

3. OLD MAP ANALYSIS 

Figures 3 shows the old maps which were used in this study. The (a) is the pictorial map drawn in 1785, in 
which the streams and levees of the Kurobe River were plotted together with village names and main roads. 
The (b) is a part of the modern map of all over Japan published in 1910, where the location of villages with 
their names almost common to those in the pictorial map (a) were plotted. The (c) shows the levee 
arrangements obtained by the measurement in 1894 under the direction of Johannis de Rijke, an engineer from 
the Netherland (the map is furnished by Toyama Prefectural Library). 
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First, the levee locations on the map (c) were plotted on the map (b), by comparing the river channel 

characteristics on the both maps. Next, the distortion of the map (a) was corrected using the Triangular 

Irregular Network Technique by comparing the locations of the villages, roads and large embankments to 

those on the map (b). The obtained levees were plotted on the GIS map (2015) for numerical flow simulations 

which will be described in the section 4. The results are shown in Figures 4. 

(a) Pictorial map drawn in 1785 (b) Map published  in 1910 (c) Levee survey in 1894 

   

Figure 3. Old maps used in this study 

 

(a) From pictorial map in 1785 (b) From levee survey in 1894 

  
Figure 4. Placement of old levees on the GIS map (2015)  

4. NUMERICAL FLOW SIMULATION  

4.1 Numerical Simulation Model 

A set of shallow water equations was adopted for the numerical simulation model.  

 

(1) 

 

(2) 

     

(3) 
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where (U, V) are the velocity components in (x, y) coordinates, h is the water depth, H is the water surface 

level (= h + ground level), ρ is the water density, and g is the gravitational acceleration. τ0 is the bed friction 

force, and τUU, τUV and τVV are the horizontal shear stresses, which are expressed by the following equations: 

 

(4) 

where Uf is the friction velocity, n is Manning’s roughness coefficient, ε is the vertically averaged eddy 

viscosity, k is the turbulent kinetic energy, and κ is the Karman constant. 

The differential equations were converted to difference equations by the finite volume method on the 

unstructured triangular mesh system. The equation forms and solving process are described in Akoh et al 

(2017).  

The flow rate over the banks was assumed by the following formula: 

 

(5) 

where q is the flow rate over the unit length of levee, and h1 and h2 are the water depths at the upstream and 

the downstream sides, respectively, measured from the levee crown.  

4.2 Calculation conditions 

4.2.1 Topography 

Because there have not been any large scale land elevation change after the map-(b) of 1910, the GIS digital 
elevation data published in 2015 (grid size; 5 m) were basically used for the alluvial fan topography, but some 
local changes caused by recent constructions of roads and railways were removed by interpolation from 
surrounding elevation values. 

On the other hand, the channel bed elevation was strongly affected by the construction of a high dam in the 

upstream canyon since1960, and therefore, the digital data were corrected for river bed using the longitudinal 

profile of laterally averaged channel bed deformation data published by river administration office. In addition, 

because sandbars of about two-meter high move downstream continuously in the Kurobe River, two 

topographic data were prepared in order to examine the effect of sandbar pattern on river flooding. 

4.2.2 Flood hydrograph 

Figure 5(a) shows the design flood hydrograph adopted for the present river improvement works, which was 

the past maximum flood observed in 1969. This hydrograph was reduced to the peak discharge of 3,000 and 

4,000 m3/s, return periods of which are roughly estimated as 10 and 20 years, according to the probability plot 

of annual maximum discharge, Figure 5(b). By the way, Flood records in an old document indicated that the 

villages along the river received flood damages ten times during 68 years from 1828 to 1895, the frequency of 

flood of which (10/68) corresponds to the discharge of 2,700 m3/s in Figure 5(b). 

 (b)  Probability plot of annual maximum discharge 

 

(a) Flood hydrograph 

 

 
Figure 5. Assumption of floods for numerical simulation.  
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5. RESULTS AND DISCUSSIONS  

5.1 Effect of levee construction in the 18th century 

Spatial distributions of water depth h and velocity U were obtained for each calculation time step, and a 
parameter named hydrodynamic force (HF=hU2) herein was calculated as an index for the flood impact on 
wooden houses. According to Sato et.al (1989), the HF value was roughly connected to wooden house 
damage as follows: 

HF < 1.5: almost no damage, 1.5 < HF < 2.5: partial damage, 2.5 < HF: total damage. 

Figures 6 show the simulation results of HF for Qp =3,000 and 4,000 m3/s: The (a) is for no levee condition 
and the (b) is for levees in 1785. River bed topography was assumed as sandbar pattern-1 which was the 
original GIS data. The yellow dots with alphabet show the locations of villages. In the cases of no levee 
condition, many villages at right bank side are inundated, and a few of them are located in the yellow and the 
red zones. The levees in 1785 reduced the inundation area at the right bank side in the case of Qp=3,000 m3/s 
drastically. Especially, the two long levees cut off the branch flows from the fan top and the middle of slope. 
However, the effect was not satisfactory in the case of Qp=4,000 m3/s. In addition, because there was no long 
levee at the left bank side, a branch flow from the middle of left bank caused a wide inundation toward four 
villages near the coast. 

(a) no levee condition (Qp=3,000 m3/s, Pattern-1)  (b) levees in 1785 (Qp=3,000 m3/s, Pattern-1)  

 
 

(a) no levee condition (Qp=4,000 m3/s, Pattern-1)  (b) levees in 1785 (Qp=4,000 m3/s, Pattern-1)  

  
Figures 6: HF distribution showing the effect of levees in 1785 

5.2 Hydraulic function of levee system in the mid-19th century 

Figures 7 show the HF distributions for the two sandbar patterns as well as the two flood scales, when the 

levee system was completed. For the sandbar pattern-1, flooding occurred only at the left bank side, but it 

occurred at the both bank sides for the sandbar pattern-2. This result suggests that the inundation areas 

changed much depending on the sandbar pattern. Comparison with the corresponding cases shown in Figures 

6, it can be clearly found that the completed system of discontinuous levees reduced the flood flow impact on 

the villages very successfully. 

Looking closely, the flooding starts through the simple levee openings of the upstream section, flows through 

the old river channel beside the main channel which were shown in Figure 1. Figure 8 shows the inundation 

depth at flood receding phase (the elapse time is 41 hours in Figure 5(a)), together with the velocity vectors in 

the rectangle areas where the flood flows touches the funnel-shape levees. The flooding water is absorbed into 

the main channel through the levee openings. These calculation results suggest that the civil engineers in early 

modern age ingeniously made use of the old river channels as temporary floodways by designing the levee 

openings. 
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(a) Qp=3,000 m3/s, Pattern-1 (b) Qp=4,000 m3/s, Pattern-1 

  
(c) Qp=3,000 m3/s, Pattern-2 (d) Qp=4,000 m3/s, Pattern-2 

  
Figure 7. HF distribution for the completed levee system in the mid-19th century. 

 

 
Figure 8. Flood absorption by funnel-shape levee openings 

6. CONCLUSIONS 

The numerical simulations described above suggested about the design points and hydraulic effects of river 

levees on the Kurobe Alluvial Fan in early modern age as follows: 

1. In the levee construction shown in the pictorial map of 1785, the comparatively long levees were built to 

cut off the major river branches at the right bank, and other short levees were built to guard individual 

village from the inundation.  

2. Comparison of the two levee arrangements of the late 18th and the mid-19th centuries shows that the 

former ones were integrated to complete the levee system of latter, although it is not certain if the river 

engineers in the 18th century already had a blueprint for the latter. 

3. In the mid-19th century, old river channels beside the main channel were ingeniously used as temporary 

floodways when the river discharge exceeded the main channel capacity by adopting two types levee 

openings; the simple openings for flow divergence in the upstream and the funnel-shape openings in the 

downstream for returning the inundation water to the main channel after the flood peak. 
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